• Title/Summary/Keyword: Spatial linear regression model

Search Result 92, Processing Time 0.025 seconds

Precipitation Analysis Based on Spatial Linear Regression Model (공간적 상관구조를 포함하는 선형회귀모형을 이용한 강수량 자료 분석)

  • Jung, Ji-Young;Jin, Seo-Hoon;Park, Man-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1093-1107
    • /
    • 2008
  • In this study, we considered linear regression model with various spatial dependency structures in order to make more reliable prediction of precipitation in South Korea. The prediction approaches are based on semi-variogram models fitted by least-squares estimation method and restricted maximum likelihood estimation method. We validated some candidate models from the two different estimation methods in terms of cross-validation and comparison between predicted values and observed values measured at different locations.

Taxi-demand forecasting using dynamic spatiotemporal analysis

  • Gangrade, Akshata;Pratyush, Pawel;Hajela, Gaurav
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.624-640
    • /
    • 2022
  • Taxi-demand forecasting and hotspot prediction can be critical in reducing response times and designing a cost effective online taxi-booking model. Taxi demand in a region can be predicted by considering the past demand accumulated in that region over a span of time. However, other covariates-like neighborhood influence, sociodemographic parameters, and point-of-interest data-may also influence the spatiotemporal variation of demand. To study the effects of these covariates, in this paper, we propose three models that consider different covariates in order to select a set of independent variables. These models predict taxi demand in spatial units for a given temporal resolution using linear and ensemble regression. We eventually combine the characteristics (covariates) of each of these models to propose a robust forecasting framework which we call the combined covariates model (CCM). Experimental results show that the CCM performs better than the other models proposed in this paper.

Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data (다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Cho, Young Hyun;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Motion estimation method using multiple linear regression model (다중선형회귀모델을 이용한 움직임 추정방법)

  • 김학수;임원택;이재철;이규원;박규택
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.98-103
    • /
    • 1997
  • Given the small bit allocation for motion information in very low bit-rate coding, motion estimation using the block matching algorithm(BMA) fails to maintain an acceptable level of prediction errors. The reson is that the motion model, or spatial transformation, assumed in block matching cannot approximate the motion in the real world precisely with a small number of parameters. In order to overcome the drawback of the conventional block matching algorithm, several triangle-based methods which utilize triangular patches insead of blocks have been proposed. To estimate the motions of image sequences, these methods usually have been based on the combination of optical flow equation, affine transform, and iteration. But the compuataional cost of these methods is expensive. This paper presents a fast motion estimation algorithm using a multiple linear regression model to solve the defects of the BMA and the triange-based methods. After describing the basic 2-D triangle-based method, the details of the proposed multiple linear regression model are presented along with the motion estimation results from one standard video sequence, representative of MPEG-4 class A data. The simulationresuls show that in the proposed method, the average PSNR is improved about 1.24 dB in comparison with the BMA method, and the computational cost is reduced about 25% in comparison with the 2-D triangle-based method.

  • PDF

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Spatial Prediction of Wind Speed Data (풍속 자료의 공간예측)

  • Jeong, Seung-Hwan;Park, Man-Sik;Kim, Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.345-356
    • /
    • 2010
  • In this paper, we introduce the linear regression model taking the parametric spatial association structure into account and employ it to five-year averaged wind speed data measured at 460 meteorological monitoring stations in South Korea. From the prediction map obtained by the model with spatial association parameters, we can see that inland area has smaller wind speed than coastal regions. When comparing the spatial linear regression model with classical one by using one-leave-out cross-validation, the former outperforms the latter in terms of similarity between the observations and the corresponding predictions and coverage rate of 95% prediction intervals.

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Geographical Characteristics of Business Start-up and Closing Business according to the Type of Industry (업종별 창업 및 폐업의 지리적 특성 분석)

  • Lee, Keumsook;Park, Sohyun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.178-195
    • /
    • 2019
  • In this study, we examine business start-up and closing business in a geographical context. In particular, we analyze the geographical characteristics of business start-up and closing business according to the type of industry. For the purpose, we use the last 10 years data that have been related with current economic situation since the financial crisis. In first, we identify the spatial distribution patterns of business start-up and closing business, We examine the difference between individual businesses and corporations. Finally, we construct general linear regression models and spatial regression models for them, and derive meaningful socioeconomic variables that explain their location distribution. The results of this study could provide basic data for regional planning of national and local governments that activate local economies as well as job creation.