• Title/Summary/Keyword: Spatial learning

Search Result 841, Processing Time 0.025 seconds

The Effects of Gonjadaesungchimjoongbang on Learning Ability and Memory after Ischemic Brain Injury in Rats (허혈성 뇌손상 백서에서 공자대성침중방(孔子大聖枕中方)이 학습과 기억에 미치는 영향)

  • Ryu, Su-Hyang;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • Objectives: The purpose of this study is to evaluate the effect of Gonjadaesungchimjoongbang on spatial learning abilities and memories in ischemic brain injury. Methods: Rats were separated into three groups; (1) Normal, (2) Saline medication after ischemic brain injuries (control), (3) Gonjadaesungchimjoongbang medication after ischemic brain injuries (experiment). Ischemic brain injuries was induced by MCA occlusion and reperfusion. Morris water maze test was conducted for spatial learning and memory tests. Then, the change of BDNF in the hippocampus($7^{th}$, $14^{th}$ day) was examined by immunohistoche- mistry. Results: In Morris water maze test, spatial learning abilities and memory functioning were considerably increased in the experiment group as oppose to control group on $7^{th}$ and $14^{th}$ day(p<0.01). Moreover, immunohistochemistric response of BDNF in the hippocampus indicated that the more increased immune reaction was found in the experiment group as oppose to the control group on $7^{th}$ and $14^{th}$ day. Conclusions: Gonjadaesungchimjoongbang can improve the learning abilities and memories in ischemic brain injury.

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

Adaptive SDF filter design using the Widrow-Hoff learning rule (신경회로망의 학습규칙을 이용한 SDF 적응 필터 설계)

  • 김홍만
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.103-106
    • /
    • 1989
  • A method of adaptive formation of the synthetic discriminant function(SDF) both in image plane and spatial frequency plane by using the Widrow-Hoff learning rule is proposed. The proposed method uses minimum number of interconnections between neurons so it can reduce the time for learning the neural net. Also complex valued interconnection weights are introduced for the purposes of handling the phase objects or Fourier transformed spatial frequency objects which usually have complex values for the representation of not only amplitude but also phase information. Also methods of optical implementation for the complex valued interconnection weights are discussed.

  • PDF

An Analysis on the Effects of Mathematics Learning through Tessellation Activities on Spatial Sense (테셀레이션(Tessellation)을 활용한 수학학습이 공간감각능력에 미치는 효과 분석)

  • Park, Hyun-Mee;Kang, Shin-Po;Kim, Sung-Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.2
    • /
    • pp.117-136
    • /
    • 2007
  • The purpose of this study was to analyze the effects of mathematics learning through tessellation activities on the improvement of spatial sense and to find out a better mathematics teaching method that could further develop spatial sense. For this purpose, the following questions were attempted; Can mathematics learning using tessellation activities develop spatial sense? In odor to test this hypothesis, twenty-four fifth graders of a class were selected at random. And the experimental group was divided into four groups according to gender and academic performance. The groups were protested and post-tested to determine results based on the quasi-experimental design(i.e. one-group pretest-post test design). The process of this study was checking spatial sense for a common evaluation of experimental group. In this study, tangram, pattern block, and GSP was used for mathematics learning through tessellation activities during each independent-study, discretion-activity, and math class. The instrument used in this study was a spatial sense test and pretest and post-test were implemented with the same instrument(i.e. K-WISC-III Activity Test). In conclusion, mathematics learning through tessellation activities with tangram, pattern block, and GSP is an effective teaching and learning method for the improvement of the spatial sense.

  • PDF

The Effects of 4D-Frame Teaching upon Mathematically Gifted Elementary Students' Mathematical Creativity and Spatial Sense (4D 프레임 활용 학습이 초등 수학영재학생의 공간감각 및 수학적 창의성에 미치는 영향)

  • Lee, Ju Yong;Choi, Jae Ho
    • Education of Primary School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • The aim of this study was to develop a gifted educational program in math-gifted class in elementary school using recently developed 4D-frame. This study identified how this program impacted on spatial sense and mathematical creativity for mathematically gifted students. The investigation attempted to contribute to the developments for the gifted educational program. To achieve the aim, the study analysed the 5 and 6th graders' figure learning contents from a revised version of the 2007 national curriculum. According to this analysis, twelve learning sections were developed on the basis of 4D-frame in the math-gifted educational program. The results of the study is as follows. First, a learning program using 4D-frame for spatial sense from mathematically gifted elementary school students was statistically significant. A sub-factor of spatial visualization called mental rotation and sub-factors of spatial orientations such as sense of distance and sense of spatial perception were statistically significant. Second, the learning program that uses 4D-frame for mathematical creativity was statistically significant. The sub-factors of mathematical creativity such as fluency, flexibility and originality were all statistically significant. Third, the manipulation properties of 4D-frame helped to understand the characteristics of various solid figures. Through the math discussions in the class, participants' error correction was promoted. The advantage of 4D-frame including easier manipulation helped participants' originality for their own sculpture. In summary, this found that the learning program using 4D-frame attributed to improve the spatial sense and mathematical creativity for mathematically gifted students in elementary school. These results indicated that the writers' learning program will help to develop the programs for the gifted education program in the future.

MSaGAN: Improved SaGAN using Guide Mask and Multitask Learning Approach for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.37-46
    • /
    • 2020
  • Recently, studies of facial attribute editing have obtained realistic results using generative adversarial net (GAN) and encoder-decoder structure. Spatial attention GAN (SaGAN), one of the latest researches, is the method that can change only desired attribute in a face image by spatial attention mechanism. However, sometimes unnatural results are obtained due to insufficient information on face areas. In this paper, we propose an improved SaGAN (MSaGAN) using a guide mask for learning and applying multitask learning approach to improve the limitations of the existing methods. Through extensive experiments, we evaluated the results of the facial attribute editing in therms of the mask loss function and the neural network structure. It has been shown that the proposed method can efficiently produce more natural results compared to the previous methods.

Object Classification and Change Detection in Point Clouds Using Deep Learning (포인트 클라우드에서 딥러닝을 이용한 객체 분류 및 변화 탐지)

  • Seo, Hong-Deok;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2020
  • With the development of machine learning and deep learning technologies, there has been increasing interest and attempt to apply these technologies to the detection of urban changes. However, the traditional methods of detecting changes and constructing spatial information are still often performed manually by humans, which is costly and time-consuming. Besides, a large number of people are needed to efficiently detect changes in buildings in urban areas. Therefore, in this study, a methodology that can detect changes by classifying road, building, and vegetation objects that are highly utilized in the geospatial information field was proposed by applying deep learning technology to point clouds. As a result of the experiment, roads, buildings, and vegetation were classified with an accuracy of 92% or more, and attributes information of the objects could be automatically constructed through this. In addition, if time-series data is constructed, it is thought that changes can be detected and attributes of existing digital maps can be inspected through the proposed methodology.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

Damage Detection in Truss Structures Using Deep Learning Techniques (딥러닝 기술을 이용한 트러스 구조물의 손상 탐지)

  • Lee, Seunghye;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

Comparative study of the effects in using geofix and cabri 3D on folding nets' activities (전개도 과제에서 지오픽스와 Cabri 3D를 활용한 학습의 효과 비교)

  • Seo, Hwajin;Lee, Kwangho
    • The Mathematical Education
    • /
    • v.60 no.2
    • /
    • pp.159-172
    • /
    • 2021
  • The purpose of this study is to compare and analyze the effects of physical manipulative and exploratory geometry software on the spatial sense for 5th grade elementary school students in learning nets. For this purpose, ton experimental group used Geofix, an operational learning tool, and the experimental group used Cabri 3D, an exploratory geometry software to learn the nets of solids. The comparison group was learned by worksheet only without any manipulative or software. Spatial sense tests were conducted before and after to determine the level, and eye tracking were used to analyze the strategies of students in solving nets problems. As a result, it was confirmed that the using Geofix group was the most effective for the spatial sense, and Cabri 3D could also be a good tool for learning the nets of solids. In addition, after learning the nets of solids, the analytical strategy, which was the most effective strategy for students' solving strategies, increased. In the process of solving spatial tasks such as the spatial sense tasks, eye tracking technology become a very useful tool for exploring students' strategies, so it is expected that objective and useful data will be collected through more active use in the future.