• 제목/요약/키워드: Spatial estimation

검색결과 1,463건 처리시간 0.047초

Optimal Design of the Adaptive Searching Estimation in Spatial Sampling

  • Pyong Namkung;Byun, Jong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.73-85
    • /
    • 2001
  • The spatial population existing in a plane ares, such as an animal or aerial population, have certain relationships among regions which are located within a fixed distance from one selected region. We consider with the adaptive searching estimation in spatial sampling for a spatial population. The adaptive searching estimation depends on values of sample points during the survey and on the nature of the surfaces under investigation. In this paper we study the estimation by the adaptive searching in a spatial sampling for the purpose of estimating the area possessing a particular characteristic in a spatial population. From the viewpoint of adaptive searching, we empirically compare systematic sampling with stratified sampling in spatial sampling through the simulation data.

  • PDF

Spatial Region Estimation for Autonomous CoT Clustering Using Hidden Markov Model

  • Jung, Joon-young;Min, Okgee
    • ETRI Journal
    • /
    • 제40권1호
    • /
    • pp.122-132
    • /
    • 2018
  • This paper proposes a hierarchical dual filtering (HDF) algorithm to estimate the spatial region between a Cloud of Things (CoT) gateway and an Internet of Things (IoT) device. The accuracy of the spatial region estimation is important for autonomous CoT clustering. We conduct spatial region estimation using a hidden Markov model (HMM) with a raw Bluetooth received signal strength indicator (RSSI). However, the accuracy of the region estimation using the validation data is only 53.8%. To increase the accuracy of the spatial region estimation, the HDF algorithm removes the high-frequency signals hierarchically, and alters the parameters according to whether the IoT device moves. The accuracy of spatial region estimation using a raw RSSI, Kalman filter, and HDF are compared to evaluate the effectiveness of the HDF algorithm. The success rate and root mean square error (RMSE) of all regions are 0.538, 0.622, and 0.75, and 0.997, 0.812, and 0.5 when raw RSSI, a Kalman filter, and HDF are used, respectively. The HDF algorithm attains the best results in terms of the success rate and RMSE of spatial region estimation using HMM.

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Estimation of Spatial Dependence with GEE

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.269-273
    • /
    • 2003
  • We consider an efficient parametric estimation method of spatial dependence in weak stationary processes. Spatial dependence is modeled through variogram and correlogram. Most of parametric estimation methods of correlogram use two step method; nonparametric estimation and parametric integration. We bind these two steps into one step by using GEE method instead of least squares type optimization. Our one step method is more efficient statistically and gives a clear interpretation of related concepts used in traditional two step methods.

  • PDF

공간이웃정보를 고려한 공간회귀분석 (A study on the spatial neighborhood in spatial regression analysis)

  • 김수정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.505-513
    • /
    • 2017
  • 최근, 더욱 상세하고 정확한 추정 결과를 위해 소지역추정(small area estimation; SAE)의 연구가 많이 진행되고 있다. 그 중 공간회귀모형 (spatial regression model)을 이용한 방법이 주를 이루고 있는데 이를 사용하기 위해서는 공간이웃 (spatial neighbor)의 정의가 필요하다. 본 연구에서는 공간이웃을 정의하는 방법으로 도로네 삼각망 (Delaunay triangulation; DT)을 소개하고 k-최근접 (k-nearest neighbor; KNN)과 비교하여 분석한다. 두 가지 공간이웃을 정의하는 방법중에서 어떤 방법으로 이웃을 정의하는 것이 효율적인지 알아보기 위해 시뮬레이션을 실시하였고, 지가 (land price)데이터를 이용하여 실 데이터를 분석하였다.

지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가 (Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation)

  • 김호림;김경호;윤성택;황상일;김형돈;이군택;김영주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차 (Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error)

  • 이지호;전환돈
    • 한국습지학회지
    • /
    • 제16권1호
    • /
    • pp.103-112
    • /
    • 2014
  • 면적평균강우량의 산정은 가용 수자원의 정확한 양을 파악하고 강우-유출해석에 필수적인 입력자료이기 때문에 매우 중요하다. 이와 같은 면적평균강우량의 정확한 산정을 위한 필수적인 조건은 강우관측망의 균일한 공간적 분포이다. 본 연구에서는 보다 향상된 유역 면적평균강우량 산정을 위한 강우관측망의 공간분포 평가방법론을 제시하고, 이를 한강 및 금강 유역에 적용하였다. 강우관측소의 공간적 분포 특성은 최근린 지수(nearest neighbor index)를 이용하여 정량화하였다. 유역별 강우관측소의 공간적 분포가 면적평균강우량 산정에 미치는 영향을 평가하기 위하여 2013년의 강우사상에 대해 산술평균법, 티센가중법, 추정이론을 이용하여 면적평균강우량을 산정하고 각 경우에 대해 추정오차를 평가하였다. 그 결과 공간분포가 우수한 유역은 면적평균강우량의 추정오차가 상대적으로 작으며, 반대로 공간분포가 왜곡된 유역의 경우는 상대적으로 추정오차가 큼을 확인하였다.

의사우도법을 이용한 공간 종속 모형의 추정 (Estimation of Spatial Dependence by Quasi-likelihood Method)

  • 이윤동;최혜미
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.519-533
    • /
    • 2004
  • 본 연구에서는 베리오그램 추정을 통한 공간 종속성 추정방법에 있어서 의사우도 사용 방법을 설명하고, 모의실험을 통하여 전통적으로 사용되는 다른 방법들과 그 특성을 비교하고자 한다. 의사우도를 이용한 공간 종속 추정방법들은 그 통계적 성질이 우수할 뿐만 아니라, 전통적인 방법들에서 요구되어지는 관측치가 갖는 래그(lag)들을 미리 지정된 래그로 그룹화하는 과정이 필요 없어서 활용상의 우수성도 함께 가지고 있다. 또한, 이 방법에 대한 로버스트 방법을 개발하고 그 특성을 알아보고자 한다.

Selectivity Estimation for Spatial Databases

  • Chi, Jeong-Hee;Lee, Jin-Yul;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.766-768
    • /
    • 2003
  • Selectivity estimation for spatial query is curial in Spatial Database Management Systems(SDBMS). Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count arising from properties of spatial dataset, they can not get such effects in little memory space.* Therefore, we need to compress spatial dataset into little memory. In this paper, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results. Our method is based on two techniques:(a)MinSkew partitioning algorithm which deal with skewed spatial datasets. efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. The experimental result shows that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF

Spatial Selectivity Estimation Using Wavelet

  • Lee, Jin-Yul;Chi, Jeong-Hee;Ryu, Keun-Ho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.459-462
    • /
    • 2003
  • Selectivity estimation of queries not only provides useful information to the query processing optimization but also may give users with a preview of processing results. In this paper, we investigate the problem of selectivity estimation in the context of a spatial dataset. Although several techniques have been proposed in the literature to estimate spatial query result sizes, most of those techniques still have some drawback in the case that a large amount of memory is required to retain accurate selectivity. To eliminate the drawback of estimation techniques in previous works, we propose a new method called MW Histogram. Our method is based on two techniques: (a) MinSkew partitioning algorithm that processes skewed spatial datasets efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. With the experimental result, we prove that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF