• Title/Summary/Keyword: Spatial amplification

Search Result 51, Processing Time 0.027 seconds

Subjective Evaluation of Loudspeaker Layouts for a Large Dome (대공간 스피커 배치 방식의 주관적 평가 연구)

  • Jeong, Dae-Up;Choi, Young-Ji;Kim, Jeong-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.75-80
    • /
    • 2010
  • The present study tried to provide useful data for the acoustic design of sound amplification system with measuring and analyzing subjective preference and intelligibility by varying the number of speakers and their directivity. The results suggest that the room absorption plays a key role in subjective responses of listeners and the large sound absorption of ceiling contributes to the increase of intelligibility. Also, larger number of speakers with narrow directivity improves perceived intelligibility when speakers were installed at the lower height. However, the highest degree of intelligibility and preference were obtained when speakers were installed close enough to the sound absorptive ceiling. The highest intelligibility and preference were observed when 8 to 10 speakers with the directivity of 60 degree were used.

  • PDF

Analytical Study of Static and Dynamic Responses of Multi-story Brick Pagoda of Silleuksa Temple (신륵사 다층전탑의 구조해석에 대한 연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2022
  • Recently, cultural heritages in South Korea gain many interests of restoration and preservation from the government since many of that have been severely damaged during earthquakes. Many previous studies in both terms of experimental and analytical approaches have been done to examine structural behavior and decide appropriate methods of preservation. Being motivated by such researches, this research aims to investigate a religious stone pagoda dated back to the Goryeo Dynasty in Korea. The structure consists of a granite stone foundation and baked bricks, which resembles the shape of traditional pagodas. In order to examine the structural behavior of the pagoda, an analytical model is implemented using ANSYS, a comprehensive engineering simulation platform. For the time history analysis of the pagoda, several earthquake excitations are chosen and input to simulation modeling. Seismic response of the tower such as time domain, natural frequency, modal shapes and peak acceleration measured at each layer are presented and discussed. In addition, the amplification ratio of the tower is calculated from the accelerations of each layer to determine tower stability in accordance with Korean seismic design guide. The determination and evaluation of status and response of the brick tower by simulation analysis play an important role in the preservation of history as well as valuable architectural heritages in South Korea.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

A Semantics Analysis in the Net Arts fran a Cybernetics Perspective (사이버네틱스 관점에서 본 넷 아트에 나타난 의미론적 분석)

  • Eun, Chang Ik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.123-136
    • /
    • 2011
  • Arts gains a new relation as the new academic area that deals with living organisms and through this technology, it affects everything, such as the body, entity, consciousness and unconsciousness to bring an overall change. Based on this premise, arts require a different interpretation from the previous product-focused interpretation or the analysis focusing on the aesthetics. As the result of arts using the scientific methods, I examined the changes of the arts semantics and how it evolved with what kind of contents and characteristics. The net art with the internet base also form a close relationship with the social and cultural codes. In categorizing the social issues and the topical discussions with semantic factors that evolve from the digital biological perspective, it can be divided into four types of complex interaction, positive feedback negative feedback, and amplification of unsettledness. Based on the characteristics of the multimedia and the interactive reaction, the technique and the imagery amplify the message through a spatial and timely meeting in a mutual repletion. In other words, the emotional communication is used to attempt the messages from the products and the expression in various methods.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

1.4GHz-BAND RADIO INTERFERENCES AT SEOUL RADIO ASTRONOMICAL OBSERVATORY (서울대학교 전파천문대 부근의 1.4GHz 대역 전파 환경)

  • KOO BON-CHUL;LEE JUNG-WON;KIM CHANG-HEE
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • We have carried out measurements of 1.2-1.6GHz radio interferences around Seoul Radio Astronomy Observatory located in the campus of Seoul National University. We received interference signals using a pyramidal horn antenna and measured its power using a spectrum analyzer with 1MHz resolution after $\~60dB$ amplification. In order to check the spatial characteristics, we made observations at every $30^{\circ}$ in azimuth at elevation of $30^{\circ}\;and\;60^{\circ}$. Also, in order to check the temporal characteristics, we repeated the all-sky observations five times at every six hours. The results may be summarized as follows: (1) There are strong $({\geq}-20dBm)$ interferences between 1.2 and 1.4GHz. Particularly strong interferences are observed at 1.271 and 1.281GHz, which have maximum powers of -0.34dBm and -0.56dBm, respectively. (2) The characteristics of the interferences do not depend strongly on directions, although the interferences are in general weak at high elevation and in east-west direction. (3) The interferences appear for a very short $(\leq0.01s)$ period of time, so that the average power is much smaller than the maximum power. Strong interferences with large $(\leq-49.0dBm)$ average power have been observed at 1.271, 1.281, 1.339, and 1.576GHz. At these frequencies, the interferences appear repeatedly with a period of $\leq0.1s$ By analyzing the observed power, we find that, for the strongest 1.271GHz interference, the average intensity is $-171dBW/m^2/Hz$ and that the maximum intensity is $-122dBW/m^2/Hz$. If this interference is delivered to the detector without any shielding, then its power would be much greater than the rms noise of a typical line spectrum. Therefore, it is important to shield all the parts of receiver carefully from radio interferences. Also, without appropriate shielding, the sensitivity of a receiver could be limited by the interference.

  • PDF

The Effect of the Shear Wave Velocity of a Seismic Control Point on Site Response Analysis (기반암 전단파속도의 부지응답특성 영향평가)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In order to evaluate the effect of shear wave velocity of a seismic control point on site response analysis, one-dimensional equivalent linear site response analysis were performed on the model soil profile based on the results of a detailed site investigation of sedimentary layers at Incheon and Busan. The results of the analysis show that an increase of shear wave velocity on the seismic control point (base rock) results in an increase of acceleration in the soil layers. This was mainly due to an unclear definition of the seismic control point. For this reason, the Korean Seismic Design Standard requires a specific definition of the seismic control point, including spatial conditions and soil properties, similar to the MCE (Maximum Considered Earthquake) in FEMA 369.

Prediction of Tunnel Response by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 대한 터널의 응답 예측)

  • Kim, Intai;Han, Jungwoo;Yun, Seung;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three dimensional finite element analyses. Results of the analyses show that the spatially variable ground motion cause longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the material properties of the ground change in the longitudinal direction.

  • PDF

Assessment of Seismic Site Response at Hongseong in Korea Based on Two-dimensional Basin Modeling using Spatial Geotechnical Information (공간 지반 정보를 활용한 이차원 분지 모델링 기반의 국내 홍성 지역에서의 부지 지진 응답 평가)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • The site effects relating to the amplification of ground motion under earthquake loading are strongly influenced by both the subsurface soil condition and geologic structure. In this study, the site effects at the Hongseong area in Korea were examined by both the site investigation including borehole drilling and in-situ seismic tests and the site visit for acquiring geologic information of ground surface. Subsurface of Hongseong area with a major instrumental earthquake event in 1978 is composed of weathered layers of a maximum of 45 m thickness overlying bedrock. A geotechnical information system based on GIS framework was implemented to effectively find out spatial geologic structure of study area and it indicated Hongseong is a shallow and wide shaped basin. Two-dimensional finite element (FE) analyses for a representative cross-section of the Hongseong area were performed to evaluate seismic site responses. From the results of seismic responses, it was observed that the ground motions were amplified during the propagation of shear waves through the soil layer overlying the bedrock and the duration of shaking near the basin edges was prolonged due to the surface waves generated by interactions of shear waves with basin geometry. Furthermore, one-dimensional FE seismic response analyses were additionally conducted for soil sites selected in the basin, and it gives similar results to the two-dimensional seismic responses at most locations in the basin with the exception of the locations near the basin edges, because the basin in this study is very shallow and wide.