• Title/Summary/Keyword: Spatial amplification

Search Result 51, Processing Time 0.027 seconds

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

Seismic Response Analysis According to the Height of Substructure of the Dome Structure Using Mid-Story Isolation System (중간층 면진을 적용한 돔 구조물의 하부 구조 높이에 따른 지진 응답 분석)

  • Choi, Na-Young;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • Spatial structure does not have columns and walls installed inside, so they have a large space. There are upper structure and substructure supporting them. The response of seismic loads to the upper structure may be increased or decreased due to the effects of the substructure. Therefore, in this study, the seismic response of the upper structure and the floor response spectrum of the substructure were compared and analyzed according to the height of the substructure in the spatial structure where the LRB was installed. As a result, the possibility of amplification of response was confirmed as seismic waves passed though the substructure, which is likely to increase the response of the upper structures.

Beam-Combining Technology and its Applications (Beam-Combining Technology와 그 응용)

  • 권진혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.07a
    • /
    • pp.77-82
    • /
    • 1991
  • 여러개의 레이저 빔을 결합하여 대표적인 방법의 장단점을 비교 분석하였다. incoherent 방법으로는 wavelength multiplexing, spatial multiplexing, polarization multiplexing을 분석하였고 coherent 방법으로는 binary phase grating과 travelng-were amplification을 고려하였다. 특히 고출력 laser diode array를 이용한 대출력 증폭기 시스템을 분석하였다.

  • PDF

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

A Basic Study on the Influence of an Understructure on the Seismic Response of a Spatial Structure (공간구조의 지진응답에 대한 연구 하부구조의 영향에 관한 기초적 연구)

  • Jung, Chan-Woo;Jung, Hwan-Mok
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.215-226
    • /
    • 2005
  • To study the influence of an lower part on the seismic response of a spatial structure as the upper part of a structure, as a first step, authors subsititude the upper part and the lower part of a structure to single degree of freedom systems indivisually, and set up structural models connected by them. It is clarified that the mass ratio and the period ratio of an upper part to a lower part are important parameteres to find the amplification or reduction of the sesimic response of an upper part by considering of a lower part.

  • PDF

Simmyung Laser System and Study on the X-ray Generation (신명 레이저와 X-선 발생 연구)

  • Kong, Hong-Jin;Han, Ki-Gwan;Kim, Nam-Seong;Kim, Hyun-Soo;Um, Ki-Young;Park, Jong-Rak;Lee, Jae-Youg;Shin, Yun-Sup;Han, Ki-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.185-189
    • /
    • 1995
  • A high-power Nb:glass laser system(Simmyung I) has been contructed and tested. In this system, we used a Nb:YLF laser as a master oscillator, a 4-pass amplifier for pre-amplification, 5 stages of rod amplifiers, and spatial filtering and image reaying usits. The system has demonstrated in excess of 80J(2TW) with 40 psec(FWHM) pulse duration. Output energy, gain and spatial were measured at each amplification stage. With this laser system a preliminary X-ray generation experiment was performed. Pinhole images, X-ray diode signals and X-ray speriment were obtained for the irradiated target of copper. Detailed descriptions of the system performance and the X-tay generation experiment are presented.

  • PDF

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

Quantification of Particle Velocity and Intensity Estimation Error in a Discrete Domain (이산 영역에서 공간상의 입자속도, 인텐시티 예측 오차의 정량화)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.403-407
    • /
    • 2003
  • This paper studies the error of pressure, particle velocity, and intensity which are distributed in a space. Errors may be amplified when other sound field variables are predicted. We theoretically derive their bias error and random error. The analysis shows that many samples do not always guarantee good results. Random error of the velocity and intensity are increased when many samples are used. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

  • PDF

Spectrum Sensing and Data Transmission in a Cognitive Relay Network Considering Spatial False Alarms

  • Tishita, Tasnina A.;Akhter, Sumiya;Islam, Md. Imdadul;Amin, M. Ruhul
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.459-470
    • /
    • 2014
  • In this paper, the average probability of the symbol error rate (SER) and throughput are studied in the presence of joint spectrum sensing and data transmission in a cognitive relay network, which is in the environment of an optimal power allocation strategy. In this investigation, the main component in calculating the secondary throughput is the inclusion of the spatial false alarms, in addition to the conventional false alarms. It has been shown that there exists an optimal secondary power amplification factor at which the probability of SER has a minimum value, whereas the throughput has a maximum value. We performed a Monte-Carlo simulation to validate the analytical results.