• Title/Summary/Keyword: Spatial accuracy

Search Result 2,022, Processing Time 0.025 seconds

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

Keywords and Spatial Based Indexing for Searching the Things on Web

  • Faheem, Muhammad R.;Anees, Tayyaba;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1489-1515
    • /
    • 2022
  • The number of interconnected real-world devices such as sensors, actuators, and physical devices has increased with the advancement of technology. Due to this advancement, users face difficulties searching for the location of these devices, and the central issue is the findability of Things. In the WoT environment, keyword-based and geospatial searching approaches are used to locate these devices anywhere and on the web interface. A few static methods of indexing and ranking are discussed in the literature, but they are not suitable for finding devices dynamically. The authors have proposed a mechanism for dynamic and efficient searching of the devices in this paper. Indexing and ranking approaches can improve dynamic searching in different ways. The present paper has focused on indexing for improving dynamic searching and has indexed the Things Description in Solr. This paper presents the Things Description according to the model of W3C JSON-LD along with the open-access APIs. Search efficiency can be analyzed with query response timings, and the accuracy of response timings is critical for search results. Therefore, in this paper, the authors have evaluated their approach by analyzing the search query response timings and the accuracy of their search results. This study utilized different indexing approaches such as key-words-based, spatial, and hybrid. Results indicate that response time and accuracy are better with the hybrid approach than with keyword-based and spatial indexing approaches.

Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model (공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

The Positional Accuracy Quality Assessment of Digital Map Generalization (수치지도 일반화 위치정확도 품질평가)

  • 박경식;임인섭;최석근
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • It is very important to assess spatial data quality of a digital map produced through digital map generalization. In this study, as a aspect of spatial data quality maintenance, we examined the tolerate range of theoretical expectation accuracy and established the quality assessment standard in spatial data for the transformed digital map data do not act contrary to the digital map specifications and the digital map accuracy of the relational scale. And, transforming large scale digital map to small scale, if we reduce complexity through processes as simplification, smoothing, refinement and so on., the spatial position change may be always happened. thus, because it is very difficult to analyse the spatial accuracy of the transformed position, we used the buffering as assessment method of spatial accuracy in digital map generalization procedure. Although the tolerated range of generic positioning error for l/l, 000 and l/5, 000 scale is determined based on related law, because the algorithms adapted to each processing elements have different property each other, if we don't determine the suitable parameter and tolerance, we will not satisfy the result after generalization procedure with tolerated range of positioning error. The results of this study test which is about the parameters of each algorithm based on tolerated range showed that the parameter of the simplification algorithm and the positional accuracy are 0.2617 m, 0.4617 m respectively.

  • PDF

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.

Spatiotemporal Location Fingerprint Generation Using Extended Signal Propagation Model

  • Kim, Hee-Sung;Li, Binghao;Choi, Wan-Sik;Sung, Sang-Kyung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.789-796
    • /
    • 2012
  • Fingerprinting is a widely used positioning technology for received signal strength (RSS) based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the key factor of the positioning technology, temporal RSS variation needs to be considered for more accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. The proposed spatiotemporal fingerprint generation method consists of two algorithms running in parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location fingerprints at dense reference locations. The two different algorithms are connected by the extended signal propagation model which describes the spatial and temporal measurement characteristics in one frame. An experiment demonstrates that the proposed method provides an improved positioning accuracy.

Pre-Filtering based Post-Load Shedding Method for Improving Spatial Queries Accuracy in GeoSensor Environment (GeoSensor 환경에서 공간 질의 정확도 향상을 위한 선-필터링을 이용한 후-부하제한 기법)

  • Kim, Ho;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • In u-GIS environment, GeoSensor environment requires that dynamic data captured from various sensors and static information in terms of features in 2D or 3D are fused together. GeoSensors, the core of this environment, are distributed over a wide area sporadically, and are collected in any size constantly. As a result, storage space could be exceeded because of restricted memory in DSMS. To solve this kind of problems, a lot of related studies are being researched actively. There are typically 3 different methods - Random Load Shedding, Semantic Load Shedding, and Sampling. Random Load Shedding chooses and deletes data in random. Semantic Load Shedding prioritizes data, then deletes it first which has lower priority. Sampling uses statistical operation, computes sampling rate, and sheds load. However, they are not high accuracy because traditional ones do not consider spatial characteristics. In this paper 'Pre-Filtering based Post Load Shedding' are suggested to improve the accuracy of spatial query and to restrict load shedding in DSMS. This method, at first, limits unnecessarily increased loads in stream queue with 'Pre-Filtering'. And then, it processes 'Post-Load Shedding', considering data and spatial status to guarantee the accuracy of result. The suggested method effectively reduces the number of the performance of load shedding, and improves the accuracy of spatial query.

A Study on the Improvement of UAV based 3D Point Cloud Spatial Object Location Accuracy using Road Information (도로정보를 활용한 UAV 기반 3D 포인트 클라우드 공간객체의 위치정확도 향상 방안)

  • Lee, Jaehee;Kang, Jihun;Lee, Sewon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.705-714
    • /
    • 2019
  • Precision positioning is necessary for various use of high-resolution UAV images. Basically, GCP is used for this purpose, but in case of emergency situations or difficulty in selecting GCPs, the data shall be obtained without GCPs. This study proposed a method of improving positional accuracy for x, y coordinate of UAV based 3 dimensional point cloud data generated without GCPs. Road vector file by the public data (Open Data Portal) was used as reference data for improving location accuracy. The geometric correction of the 2 dimensional ortho-mosaic image was first performed and the transform matrix produced in this process was adopted to apply to the 3 dimensional point cloud data. The straight distance difference of 34.54 m before the correction was reduced to 1.21 m after the correction. By confirming that it is possible to improve the location accuracy of UAV images acquired without GCPs, it is expected to expand the scope of use of 3 dimensional spatial objects generated from point cloud by enabling connection and compatibility with other spatial information data.

The 3 Dimension Accuracy Analysis of Human Body Using the Digital Image (수치영상에 의한 인체형상의 3차원 정확도 분석)

  • Kang, Joon-Mook;Bae, Sang-Ho;Joo, Young-Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.111-119
    • /
    • 1997
  • The precise measurement and the construction of analysis system for human body is very important in human engineering fields. As this study is about to the accuracy improvement of digital image for human body monitoring, we apply the optimum exposure condition which is decided through the accuracy analysis of digital images those are acquired at the various exposure station to the human body model. We acquired digital data in 1mm accuracy and carried out various spatial analyses. We expect tile results of this study to offer the fundamental source data for the human engineering fields.

  • PDF