• 제목/요약/키워드: Spatial Statistics Method

검색결과 219건 처리시간 0.027초

Spatial-Temporal Modelling of Road Traffic Data in Seoul City

  • 이상열;안수한;박창이;전종우
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.261-270
    • /
    • 2002
  • Recently, the demand of the Intelligent Transportation System(ITS) has been increased to a large extent, and a real-time traffic information service based on the internet system became very important. When ITS companies carry out real-time traffic services, they find some traffic data missing, and use the conventional method of reconstructing missing values by calculating average time trend. However, the method is found unsatisfactory, so that we develop a new method based the spatial and spatial-temporal models. A cross-validation technique shows that the spatial-temporal model outperforms the others.

  • PDF

Estimation of Spatial Dependence with GEE

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.269-273
    • /
    • 2003
  • We consider an efficient parametric estimation method of spatial dependence in weak stationary processes. Spatial dependence is modeled through variogram and correlogram. Most of parametric estimation methods of correlogram use two step method; nonparametric estimation and parametric integration. We bind these two steps into one step by using GEE method instead of least squares type optimization. Our one step method is more efficient statistically and gives a clear interpretation of related concepts used in traditional two step methods.

  • PDF

Sample Based Algorithm for k-Spatial Medians Clustering

  • Jin, Seo-Hoon;Jung, Byoung-Cheol
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.367-374
    • /
    • 2010
  • As an alternative to the k-means clustering the k-spatial medians clustering has many good points because of advantages of spatial median. However, it has not been used a lot since it needs heavy computation. If the number of objects and the number of variables are large the computation time problem is getting serious. In this study we propose fast algorithm for the k-spatial medians clustering. Practical applicability of the algorithm is shown with some numerical studies.

Generalized Lasso를 이용한 공간 군집 기법 (Spatial Clustering Method Via Generalized Lasso)

  • 송은정;최호식;황승식;이우주
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.561-575
    • /
    • 2014
  • 본 논문에서는 질병과 연관성을 갖는 국소 공간 군집을 검출할 수 있는 벌칙 가능도 방법을 제안한다. 핵심적인 계산 알고리즘은 Tibshirani와 Taylor (2011)에 의해 제안된 일반화된 라소(generalized lasso)에 기반한다. 제안된 방법은 현재 널리 사용되고 있는 국소 공간 군집 방법인 Kulldorff의 기법에 비해 두가지 주요 장점을 가지고 있다. 첫째로, 제안된 방법은 사전에 군집의 크기를 미리 결정해 줄 필요가 없다. 둘째로, 임의의 설명변수를 공간 군집 탐색 기법에 고려할 수 있기 때문에 인구학적인 변수를 보정하였을 때 나타나는 국소 공간 군집을 찾는 것이 가능하다. 우리는 제안된 방법을 서울시 결핵 자료를 사용하여 설명한다.

Detection of Hotspots for Geospatial Lattice Data

  • Moon, Sung-Ho;Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.131-139
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. The main purpose of this paper is to detect hotspots for the region with significantly high or low rates. Kulldorff(1997) detected hotspots based on circular spatial scan statistics. We propose a new method to find any shapes of hotspots by use of echelon analysis with spatial scan statistics.

  • PDF

On a Modified k-spatial Medians Clustering

  • Jhun, Myoungshic;Jin, Seohoon
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.247-260
    • /
    • 2000
  • This paper is concerned with a modification of the k-spatial medians clustering. To find a suitable number of clusters, the number k of clusters is incorporated into the k-spatial medians clustering criterion through a weight function. Proposed method for the choice of the weight function offers a reasonable number of clusters. Some theoretical properties of the method are investigated along with some examples.

  • PDF

Interpretation of Real Information-missing Patch of Remote Sensing Image with Kriging Interpolation of Spatial Statistics

  • Yiming, Feng;Xiangdong, Lei;Yuanchang, Lu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1479-1481
    • /
    • 2003
  • The aim of this paper was mainly to interpret the real information-missing patch of image by using the kriging interpolation technology of spatial statistics. The TM Image of the Jingouling Forest Farm of Wangqing Forestry Bureau of Northeast China on 1 July 1997 was used as the tested material in this paper. Based on the classification for the TM image, the information pixel-missing patch of image was interpolated by the kriging interpolation technology of spatial statistics theory under the image treatment software-ERDAS and the geographic information system software-Arc/Info. The interpolation results were already passed precise examination. This paper would provide a method and means for interpreting the information-missing patch of image.

  • PDF

공간시계열 모형의 칼만필터 추정과 예측 (Kalman-Filter Estimation and Prediction for a Spatial Time Series Model)

  • 이성덕;한은희;김덕기
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.79-87
    • /
    • 2011
  • 공간적, 시간적으로 퍼져나가는 전염성이 강한 질병인 수두자료를 이용하여 공간 시계열 자료를 분석하는데 있어 일반적으로 알려진 ARIMA 모형에 적합하여 분석을 행하면 공간적인 정보를 반영하지 못하기 때문에 기존에 시간만을 고려한 시계열 분석방법에 공간통계의 공간적 정보를 반영한 공간시계열 모형을 고려한다. 공간시계열 모형에서 공간의 위치 및 영향은 시계열 모형에 공간적 정보로써 가중치행렬을 더 함으로써 처리 가능해진다. 가중치행렬은 지리적으로 인접한 지역일수록 공간의존도가 높다는 것을 반영한 것이며 공간시계열 모형의 연구에서 가중치행렬은 인접한 지역들은 동일한 영향을 줄 것이라 가정하였다. 따라서 본 논문에서는 공간시계열 모형인 STARMA 모형과 STBL 모형에 대한 식별방법, 통계적 추론 및 예측력 비교에 대해 연구하였고 특히, 모수추정의 알고리즘 비교와 공간시계열 모형의 예측력 비교를 통해 Kalman-Filter 방법의 우수성을 보이고자 한다.

K-function Test for he Spatial Randomness among the Earthquakes in the Korean Peninsula

  • Baek, Jangsung;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.499-505
    • /
    • 2001
  • Kim and Baek (2000) tested the spatial randomness for he earthquake occurrence in the Korean Peninsula by using the nearest-neighbor test statistics and empirical distribution functions. The K-function, however, has obvious advantages over the methods used in Kim and Baek (2000), such as it does not depend on the shape of the study region and is an effective summary of spatial dependence over a wide range of scales. We applied the K-function method for testing the randomness to both of the historical and the instrumental seismicity data. It was found that he earthquake occurrences for historical and instrumental seismicity data are not random and clustered rather than scattered.

  • PDF

공간 통계 활용에 따른 소지역 추정법의 평가 (Evaluations of Small Area Estimations with/without Spatial Terms)

  • 신기일;최봉호;이상은
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.229-244
    • /
    • 2007
  • 국내외에서 소지역 추정에 관한 많은 연구가 진행되고 있다. 보조 자료가 충분히 있는 경우 모형기반 추정법을 사용하는 것이 일반적이며 이 중에서 계층적 베이지안(Hierarchical Bayesian: HB) 추정법이 가장 좋은 것으로 알려져 있다. 그러나 보조 자료가 충분하지 않은 경우에는 모형 기반 추정법의 사용은 제한적이다. 최근 충분한 보조 자료가 없는 경우 공간 정보를 보조 자료로 사용하는 방법이 제안되었다. 본 논문에서는 공간통계량과 베이즈 접근방법을 활용한 모형기반의 소지역 통계량들을 모형 검진방법(Diagnostic method)들을 이용하여 비교 분석하였다. 분석에 사용된 자료는 2005년도 경제활동인구 조사이며 소지역(시,군,구)통계를 추정하여 비교하였다.