Journal of the Korean Data and Information Science Society
/
제13권2호
/
pp.261-270
/
2002
Recently, the demand of the Intelligent Transportation System(ITS) has been increased to a large extent, and a real-time traffic information service based on the internet system became very important. When ITS companies carry out real-time traffic services, they find some traffic data missing, and use the conventional method of reconstructing missing values by calculating average time trend. However, the method is found unsatisfactory, so that we develop a new method based the spatial and spatial-temporal models. A cross-validation technique shows that the spatial-temporal model outperforms the others.
We consider an efficient parametric estimation method of spatial dependence in weak stationary processes. Spatial dependence is modeled through variogram and correlogram. Most of parametric estimation methods of correlogram use two step method; nonparametric estimation and parametric integration. We bind these two steps into one step by using GEE method instead of least squares type optimization. Our one step method is more efficient statistically and gives a clear interpretation of related concepts used in traditional two step methods.
As an alternative to the k-means clustering the k-spatial medians clustering has many good points because of advantages of spatial median. However, it has not been used a lot since it needs heavy computation. If the number of objects and the number of variables are large the computation time problem is getting serious. In this study we propose fast algorithm for the k-spatial medians clustering. Practical applicability of the algorithm is shown with some numerical studies.
본 논문에서는 질병과 연관성을 갖는 국소 공간 군집을 검출할 수 있는 벌칙 가능도 방법을 제안한다. 핵심적인 계산 알고리즘은 Tibshirani와 Taylor (2011)에 의해 제안된 일반화된 라소(generalized lasso)에 기반한다. 제안된 방법은 현재 널리 사용되고 있는 국소 공간 군집 방법인 Kulldorff의 기법에 비해 두가지 주요 장점을 가지고 있다. 첫째로, 제안된 방법은 사전에 군집의 크기를 미리 결정해 줄 필요가 없다. 둘째로, 임의의 설명변수를 공간 군집 탐색 기법에 고려할 수 있기 때문에 인구학적인 변수를 보정하였을 때 나타나는 국소 공간 군집을 찾는 것이 가능하다. 우리는 제안된 방법을 서울시 결핵 자료를 사용하여 설명한다.
Journal of the Korean Data and Information Science Society
/
제17권1호
/
pp.131-139
/
2006
Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. The main purpose of this paper is to detect hotspots for the region with significantly high or low rates. Kulldorff(1997) detected hotspots based on circular spatial scan statistics. We propose a new method to find any shapes of hotspots by use of echelon analysis with spatial scan statistics.
This paper is concerned with a modification of the k-spatial medians clustering. To find a suitable number of clusters, the number k of clusters is incorporated into the k-spatial medians clustering criterion through a weight function. Proposed method for the choice of the weight function offers a reasonable number of clusters. Some theoretical properties of the method are investigated along with some examples.
The aim of this paper was mainly to interpret the real information-missing patch of image by using the kriging interpolation technology of spatial statistics. The TM Image of the Jingouling Forest Farm of Wangqing Forestry Bureau of Northeast China on 1 July 1997 was used as the tested material in this paper. Based on the classification for the TM image, the information pixel-missing patch of image was interpolated by the kriging interpolation technology of spatial statistics theory under the image treatment software-ERDAS and the geographic information system software-Arc/Info. The interpolation results were already passed precise examination. This paper would provide a method and means for interpreting the information-missing patch of image.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.79-87
/
2011
공간적, 시간적으로 퍼져나가는 전염성이 강한 질병인 수두자료를 이용하여 공간 시계열 자료를 분석하는데 있어 일반적으로 알려진 ARIMA 모형에 적합하여 분석을 행하면 공간적인 정보를 반영하지 못하기 때문에 기존에 시간만을 고려한 시계열 분석방법에 공간통계의 공간적 정보를 반영한 공간시계열 모형을 고려한다. 공간시계열 모형에서 공간의 위치 및 영향은 시계열 모형에 공간적 정보로써 가중치행렬을 더 함으로써 처리 가능해진다. 가중치행렬은 지리적으로 인접한 지역일수록 공간의존도가 높다는 것을 반영한 것이며 공간시계열 모형의 연구에서 가중치행렬은 인접한 지역들은 동일한 영향을 줄 것이라 가정하였다. 따라서 본 논문에서는 공간시계열 모형인 STARMA 모형과 STBL 모형에 대한 식별방법, 통계적 추론 및 예측력 비교에 대해 연구하였고 특히, 모수추정의 알고리즘 비교와 공간시계열 모형의 예측력 비교를 통해 Kalman-Filter 방법의 우수성을 보이고자 한다.
Communications for Statistical Applications and Methods
/
제8권2호
/
pp.499-505
/
2001
Kim and Baek (2000) tested the spatial randomness for he earthquake occurrence in the Korean Peninsula by using the nearest-neighbor test statistics and empirical distribution functions. The K-function, however, has obvious advantages over the methods used in Kim and Baek (2000), such as it does not depend on the shape of the study region and is an effective summary of spatial dependence over a wide range of scales. We applied the K-function method for testing the randomness to both of the historical and the instrumental seismicity data. It was found that he earthquake occurrences for historical and instrumental seismicity data are not random and clustered rather than scattered.
국내외에서 소지역 추정에 관한 많은 연구가 진행되고 있다. 보조 자료가 충분히 있는 경우 모형기반 추정법을 사용하는 것이 일반적이며 이 중에서 계층적 베이지안(Hierarchical Bayesian: HB) 추정법이 가장 좋은 것으로 알려져 있다. 그러나 보조 자료가 충분하지 않은 경우에는 모형 기반 추정법의 사용은 제한적이다. 최근 충분한 보조 자료가 없는 경우 공간 정보를 보조 자료로 사용하는 방법이 제안되었다. 본 논문에서는 공간통계량과 베이즈 접근방법을 활용한 모형기반의 소지역 통계량들을 모형 검진방법(Diagnostic method)들을 이용하여 비교 분석하였다. 분석에 사용된 자료는 2005년도 경제활동인구 조사이며 소지역(시,군,구)통계를 추정하여 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.