• Title/Summary/Keyword: Spatial Statistics

Search Result 653, Processing Time 0.038 seconds

Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation (지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정)

  • KIM, Yeseul;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.85-99
    • /
    • 2013
  • The objective of this paper is to analyze the spatial distribution of errors in the DEM generated using waterlines from multi-temporal remote sensing data and to assess flood vulnerability. Unlike conventional research in which only global statistics of errors have been generated, this paper tries to quantitatively analyze the spatial distribution of errors from a probabilistic viewpoint using geostatistical simulation. The initial DEM in Baramarae tidal flats was generated by corrected tidal level values and waterlines extracted from multi-temporal Landsat data in 2010s. When compared with the ground measurement height data, overall the waterline-based DEM underestimated the actual heights and local variations of the errors were observed. By applying sequential Gaussian simulation based on spatial autocorrelation of DEM errors, multiple alternative error distributions were generated. After correcting errors in the initial DEM with simulated error distributions, probabilities for flood vulnerability were estimated under the sea level rise scenarios of IPCC SERS. The error analysis methodology based on geostatistical simulation could model both uncertainties of the error assessment and error propagation problems in a probabilistic framework. Therefore, it is expected that the error analysis methodology applied in this paper will be effectively used for the probabilistic assessment of errors included in various thematic maps as well as the error assessment of waterline-based DEMs in tidal flats.

A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis (통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석)

  • Seong H. Kim;Sang-Bin Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall Data (MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구)

  • Hong, Suk Young;Na, Sang-Il;Lee, Kyung-Do;Kim, Yong-Seok;Baek, Shin-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • Lack of agricultural information for food supply and demand in Democratic People's republic Korea(DPRK) make people sometimes confused for right and timely decision for policy support. We carried out a study to estimate paddy rice yield in DPRK using MODIS NDVI reflecting rice growth and climate data. Mean of MODIS $NDVI_{max}$ in paddy rice over the country acquired and processed from 2002 to 2014 and accumulated rainfall collected from 27 weather stations in September from 2002 to 2014 were used to estimated paddy rice yield in DPRK. Coefficient of determination of the multiple regression model was 0.44 and Root Mean Square Error(RMSE) was 0.27 ton/ha. Two-way analysis of variance resulted in 3.0983 of F ratio and 0.1008 of p value. Estimated milled rice yield showed the lowest value as 2.71 ton/ha in 2007, which was consistent with RDA rice yield statistics and the highest value as 3.54 ton/ha in 2006, which was not consistent with the statistics. Scatter plot of estimated rice yield and the rice yield statistics implied that estimated rice yield was higher when the rice yield statistics was less than 3.3 ton/ha and lower when the rice yield statistics was greater than 3.3 ton/ha. Limitation of rice yield model was due to lower quality of climate and statistics data, possible cloud contamination of time-series NDVI data, and crop mask for rice paddy, and coarse spatial resolution of MODIS satellite data. Selection of representative areas for paddy rice consisting of homogeneous pixels and utilization of satellite-based weather information can improve the input parameters for rice yield model in DPRK in the future.

A Study on the Space Use and Behavior of Child Patients - Focus on the Rest and Play Activities - (어린이환자의 공간사용 행태에 관한 연구 - 놀이 및 휴게 활동을 중심으로 -)

  • Choi, In-Young;Park, Soo-Been
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.204-211
    • /
    • 2014
  • This study aims to investigate the child patients' space use and behavior with its focus on the rest and play activities. The structural observation method followed by literature review adapted to find out the commonality and difference of play activities among the age groups. Children's development and types of play activities and participation in activities were reviewed through the related studies. Preliminary research on spatial composition and facilities and the observation of child patients' play behavior and space use was carried out as a main research. A total of 148 cases were studied and PASW 18, a statistics analysis program, was used for data analysis. The results are as follows; (1) The Lobby was important space as a play and rest area. (2) The subjects mainly played physical play and social-cognitive play. The result of this study provides fundamental data for designing children's hospitals that can contribute to the treatment and health improvement of child patients.

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images

  • Kim, Jooseong;Lagravere, Manuel O.
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Objective: The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. Methods: CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Results: Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were $0.41{\pm}0.305%$ and $0.45{\pm}0.456%$, respectively; for anterior Bolton ratios, $0.59{\pm}0.520%$ and $1.01{\pm}0.780%$, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Conclusions: Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

Global Optimization Using Kriging Metamodel and DE algorithm (크리깅 메타모델과 미분진화 알고리듬을 이용한 전역최적설계)

  • Lee, Chang-Jin;Jung, Jae-Jun;Lee, Kwang-Ki;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.537-542
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on computer simulation. But defining exact model using computer simulation is too expensive and time consuming in the complicate systems. Thus, designers often use approximation models, which express the relation between design variables and response variables. These models are called metamodel. In this paper, we introduce one of the metamodel, named Kriging. This model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. This class of interpolating model has flexibility to model response data with multiple local extreme. By reason of this multi modality, we can't use any gradient-based optimization algorithm to find global extreme value of this model. Thus we have to introduce global optimization algorithm. To do this, we introduce DE(Differential Evolution). DE algorithm is developed by Ken Price and Rainer Storn, and it has recently proven to be an efficient method for optimizing real-valued multi-modal objective functions. This algorithm is similar to GA(Genetic Algorithm) in populating points, crossing over, and mutating. But it introduces vector concept in populating process. So it is very simple and easy to use. Finally, we show how we determine Kriging metamodel and find global extreme value through two mathematical examples.

  • PDF

POPULATION GROWTH, POVERTY INCIDENCE AND FOREST DEPENDENCY IN NEPALESE TERAI

  • Panta, Menaka;Kim, Kye-Hyun;Neupane, Hari Sharma;Joshi, Chudamani;Park, Eun-Ji
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-285
    • /
    • 2007
  • Since the human civilization, people's livelihood is dependent on natural resources primarily on forest. Human dimensions such as population, poverty, agricultural expansion and infrastructure development are some of the underlying factors and their interrelated associations which could play a vital role in deforestation and forest degradation. This process is not only related to the human population but also connected to the various socioeconomic factors. This paper focuses to link the spatio-temporal extent of population, poverty incidence and forest dependency and their severity on Terai forest of Nepal. Secondary data on censuses were used. ArcGIS and descriptive statistics were also used for data analysis. Based on analysis & literature review we concluded that population, poverty and forest dependency have largely expanded over time in Terai and their interrelated associations substantively influence on deforestation. However, the direct relationship of such factors with deforestation and forest degradation found to be incompatible, complex and hard to perceive with fragmented and inconsistency censuses data. So, deforestation and forest degradation issues intertwined with socioeconomic factors need detailed analysis to comprehend where these linkages are still unravel.

  • PDF

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF