• Title/Summary/Keyword: Spatial Statistical

Search Result 1,001, Processing Time 0.028 seconds

A Study on The Effective Utilization of Fragmented Small Space Design of Urban areas in Busan (부산시 자투리 소규모공간의 효율적 공간디자인 연구)

  • Ma, Lin;Kim, Myung-soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.145-155
    • /
    • 2021
  • With the massive expansion of cities in the 20th century, many fragmented small spaces are emerged. This research establishes a framework for analysis based on forward theories, and takes the development of small spaces in Busan as an example, draws conclusions through analysis, and construct a design model for the effective use of small spaces. Based on the theory of spatial design research, statistical analysis methods are used to analyse the effective use of fragmented small spaces in city. In order to provide guidance and reference suggestions when analyzing and researching this type of space design on the data collected from the survey in the future. The design of small spaces is a way to improve the efficiency of the space utilization through the reasonable design of this type of spaces. Urban space is designed to meet the requirements of urban residents as well as to consider the sustainable development of the environment and resources, society and culture. Meaningful solutions are proposed for the construction and development of the sustainable of the future urban spaces.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

Non-Gaussian features of dynamic wind loads on a long-span roof in boundary layer turbulences with different integral-scales

  • Yang, Xiongwei;Zhou, Qiang;Lei, Yongfu;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.421-435
    • /
    • 2022
  • To investigate the non-Gaussian properties of fluctuating wind pressures and the error margin of extreme wind loads on a long-span curved roof with matching and mismatching ratios of turbulence integral scales to depth (Lux/D), a series of synchronized pressure tests on the rigid model of the complex curved roof were conducted. The regions of Gaussian distribution and non-Gaussian distribution were identified by two criteria, which were based on the cumulative probabilities of higher-order statistical moments (skewness and kurtosis coefficients, Sk and Ku) and spatial correlation of fluctuating wind pressures, respectively. Then the characteristics of fluctuating wind-loads in the non-Gaussian region were analyzed in detail in order to understand the effects of turbulence integral-scale. Results showed that the fluctuating pressures with obvious negative-skewness appear in the area near the leading edge, which is categorized as the non-Gaussian region by both two identification criteria. Comparing with those in the wind field with matching Lux/D, the range of non-Gaussian region almost unchanged with a smaller Lux/D, while the non-Gaussian features become more evident, leading to higher values of Sk, Ku and peak factor. On contrary, the values of fluctuating pressures become lower in the wind field with a smaller Lux/D, eventually resulting in underestimation of extreme wind loads. Hence, the matching relationship of turbulence integral scale to depth should be carefully considered as estimating the extreme wind loads of long-span roof by wind tunnel tests.

A Study on Asset Preference Characteristics of Millennials and Gen Z

  • Eun-sung PARK;Jae-tae KIM
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.4
    • /
    • pp.19-30
    • /
    • 2023
  • Purpose: This study examines the factors that the Millennials and Gen Z prefers to invest in assets. We look at the asset structure they want now and in the future and the idea of designing the future. This can be expected that the center of Korea's asset market will change to the structure they want in the future. Research design, data and methodology: The spatial extent of the study is all over Korea including Seoul, the metropolitan area, and local cities. The survey was conducted for about 16 days from May 7 to May 22, 2023. The survey was conducted by the surveyor visiting the subject in person, distributing the questionnaire, explaining it, and filling it out in person. For the analysis, descriptive statistics and logistic regression analysis were conducted using the SPSS 25.0 statistical package. Results: It was confirmed that the preferred assets of the Millennials and Gen Z were different by period. There was also a difference in the influencing factors between Millennial Generation and Generation Z in asset preference. Conclusions: The Millennials and Gen Z's preferred assets were different by period. The reason is interpreted as the current process of collecting assets during the asset formation period. In the future, they intend to purchase real estate assets by using financial assets as a lump sum of money. We learned the characteristics of the entire Millennials and Gen Z, in addition, the difference between income and assets is believed to have affected the difference in preference factors of Millennial Generation and Generation Z, respectively.

Application of Urban Computing to Explore Living Environment Characteristics in Seoul : Integration of S-Dot Sensor and Urban Data

  • Daehwan Kim;Woomin Nam;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • This paper identifies the aspects of living environment elements (PM2.5, PM10, Noise) throughout Seoul and the urban characteristics that affect them by utilizing the big data of the S-Dot sensors in Seoul, which has recently become a hot topic. In other words, it proposes a big data based urban computing research methodology and research direction to confirm the relationship between urban characteristics and living environments that directly affect citizens. The temporal range is from 2020 to 2021, which is the available range of time series data for S-Dot sensors, and the spatial range is throughout Seoul by 500mX500m GRID. First of all, as part of analyzing specific living environment patterns, simple trends through EDA are identified, and cluster analysis is conducted based on the trends. After that, in order to derive specific urban planning factors of each cluster, basic statistical analysis such as ANOVA, OLS and MNL analysis were conducted to confirm more specific characteristics. As a result of this study, cluster patterns of environment elements(PM2.5, PM10, Noise) and urban factors that affect them are identified, and there are areas with relatively high or low long-term living environment values compared to other regions. The results of this study are believed to be a reference for urban planning management measures for vulnerable areas of living environment, and it is expected to be an exploratory study that can provide directions to urban computing field, especially related to environmental data in the future.

Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data (연속 CAPPI 자료를 이용한 단기강우예측모형 개발)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.543-550
    • /
    • 2009
  • The traditional simple extrapolation type short term quantitative rainfall forecast can not realize the evolution of rainfall generating weather system. To overcome the drawback of the linear extrapolation type rainfall forecasting model, the history of a weather system from sequential weather radar information and a polynomial regression technique were used to generate forecast fileds of x-directional, y-directional velocities and radar reflectivity which considered the nonlinear behavior related to the evolution of weather systems. Results demonstrated that test statistics of forecasts using the developed model is better than that of 2-CAPPI forecast. However there is still a large room to improve the forecast of spatial and temporal evolution of local storms since the model is not based on a fully physical approach but a statistical approach.

Application of a Semi-Physical Tropical Cyclone Rainfall Model in South Korea to estimate Tropical Cyclone Rainfall Risk

  • Alcantara, Angelika L.;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.152-152
    • /
    • 2022
  • Only employing historical data limits the estimation of the full distribution of probable Tropical Cyclone (TC) risk due to the insufficiency of samples. Addressing this limitation, this study introduces a semi-physical TC rainfall model that produces spatially and temporally resolved TC rainfall data to improve TC risk assessments. The model combines a statistical-based track model based on the Markov renewal process to produce synthetic TC tracks, with a physics-based model that considers the interaction between TC and the atmospheric environment to estimate TC rainfall. The simulated data from the combined model are then fitted to a probability distribution function to compute the spatially heterogeneous risk brought by landfalling TCs. The methodology is employed in South Korea as a case study to be able to implement a country-scale-based vulnerability inspection from damaging TC impacts. Results show that the proposed model can produce TC tracks that do not only follow the spatial distribution of past TCs but also reveal new paths that could be utilized to consider events outside of what has been historically observed. The model is also found to be suitable for properly estimating the total rainfall induced by landfalling TCs across various points of interest within the study area. The simulated TC rainfall data enable us to reliably estimate extreme rainfall from higher return periods that are often overlooked when only the historical data is employed. In addition, the model can properly describe the distribution of rainfall extremes that show a heterogeneous pattern throughout the study area and that vary per return period. Overall, results show that the proposed approach can be a valuable tool in providing sufficient TC rainfall samples that could be an aid in improving TC risk assessment.

  • PDF

Spatial distribution patterns of the surficial sediments in the tidal river, Gongneungcheon (공릉천 감조구간에 나타나는 표층퇴적물의 공간적 분포 특성)

  • CHOI, Yeoung Seon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.203-212
    • /
    • 2011
  • The objective of this paper is to identify the present-day surficial sediment distribution patterns of the tidal river, Gongneungcheon, through the grain size and statistical analysis. Four major findings of this study are as follows; First, the composition of sediments over the study area are mainly silt in texture. Second, the surficial sediment distribution reveals that grain size becomes coarser as they approach seawards not only in summer but also in winter. It can be concluded that tidal flows play a significant role, especially in winter, in the distribution of surficial sediments in Gongneungcheon. However, samples obtained in summer were relatively small in mean size and showed better sorting compared to those obtained in winter. Third, the mean sizes of the samples on the transects decrease as the distance from the channel increases. Finally, the artificial structure such as a floodgate affects the distribution of the sediments.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm (YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지)

  • Seongsu KIM;Youn-In CHUNG;Yun-Jae CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Detecting greenhouses from the remote sensing datasets is useful in identifying the illegal agricultural facilities and predicting the agricultural output of the greenhouses. This research proposed a methodology for automatically detecting greenhouses from a given Planetscope satellite imagery acquired in the areas of Gimje City using the deep learning technique through a series of steps. First, multiple training images with a fixed size that contain the greenhouse features were generated from the five training Planetscope satellite imagery. Next, the YOLO(You Only Look Once) model was trained using the generated training images. Finally, the greenhouse features were detected from the input Planetscope satellite image. Statistical results showed that the 76.4% of the greenhouse features were detected from the input Planetscope satellite imagery by using the trained YOLO model. In future research, the high-resolution satellite imagery with a spatial resolution less than 1m should be used to detect more greenhouse features.