• Title/Summary/Keyword: Spatial Sensitivity

Search Result 425, Processing Time 0.029 seconds

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

Identification of Priority Restoration Areas for Forest Damage Sites Using Forest Restoration Evaluation Indicators in Gangwon-Do (산림복원 평가지표를 활용한 산림 훼손지 우선복원대상지 발굴 - 강원도 지역을 대상으로 -)

  • Yoon-Sun Park;Jung-Eun Song;Chun-Hee Park
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.17-29
    • /
    • 2024
  • This study was conducted to select the restoration priority of forest damage sites in Gangwon Province. We first identified the status of damaged areas. We then selected restoration evaluation indicators through a literature review. We then set weights for these indicators through expert surveys. We next acquired data that can represent these indicators and spatially mapped them. Finally, we prioritized the restoration target sites by taking the weights. The results of the study showed that disaster sensitivity and ecologicality are important criteria for selecting the restoration priority of damage sites. The analysis showed that damage sites in Doam, Jeongseon, Samcheok and Inje are in urgent need of restoration. The results of this study are significant in that they selected the restoration priority of damage sites in Gangwon Province based on the restoration priority evaluation criteria selected based on expert surveys. However, the priority restoration areas derived from the results of this study are not actually implementing restoration projects at present. Therefore, it is judged that it would be efficient in various aspects to establish the restoration priority area based on scientific analysis techniques and carry out the project for efficient implementation of the restoration project. In this study, it can be pointed out that the priority of restoration of damage sites was derived based on data from the past due to the limitation of data acquisition. However, the fact that the priority restoration area inferred based on past data has been restored over time has improved the reliability of the study by verifying the usefulness of the priority extraction technique. In the future, if the priority of damage sites is extracted by extracting the restoration target area boundary through the latest data based on the methodology applied in this study, it is considered that it will be available as a result that can be applied to the field.

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea (기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석)

  • Kong, Inhak;Kim, Kwangjin;Lee, Yangwon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • There are many wildfire risk indices worldwide, but objective comparisons between such various wildfire risk indices and surface dryness indices have not been conducted for the wildfire cases in Korea. This paper describes a sensitivity analysis on the wildfire risk indices and surface dryness indices for Korea using LDAPS(Local Analysis and Prediction System) meteorological dataset on a 1.5-km grid and MODIS(Moderate-resolution Imaging Spectroradiometer) satellite images on a 1-km grid. We analyzed the meteorology-based wildfire risk indices such as the Australian FFDI(forest fire danger index), the Canadian FFMC(fine fuel moisture code), the American HI(Haines index), and the academically presented MNI(modified Nesterov index). Also we examined the satellite-based surface dryness indices such as NDDI(normalized difference drought index) and TVDI(temperature vegetation dryness index). As a result of the comparisons between the six indices regarding 120 wildfire cases with the area damaged over 1ha during the period between January 2013 and May 2017, we found that the FFDI and FFMC showed a good predictability for most wildfire cases but the MNI and TVDI were not suitable for Korea. The NDDI can be used as a proxy parameter for wildfire risk because its average CDF(cumulative distribution function) scores were stably high irrespective of fire size. The indices tested in this paper should be carefully chosen and used in an integrated way so that they can contribute to wildfire forecasting in Korea.

Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water (연안 원격탐사를 위한 비축 삼반사경 설계와 성능 분석)

  • Oh, Eunsong;Kang, Hyukmo;Hyun, Sangwon;Kim, Geon-Hee;Park, YoungJe;Choi, Jong-Kuk;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • We report the design and performance analysis of an off-axis three-mirror telescope as the fore optics for a new hyperspectral sensor aboard a small unmanned aerial vehicle (UAV), for low-altitude coastal remote sensing. The sensor needs to have at least 4 cm of spatial resolution at an operating altitude of 500 m, $4^{\circ}$ field of view (FOV), and a signal to noise ratio (SNR) of 100 at 660 nm. For these performance requirements, the sensor's optical design has an entrance pupil diameter of 70 mm and an F-ratio of 5.0. The fore optics is a three-mirror system, including aspheric primary and secondary mirrors. The optical performance is expected to reach $1/15{\lambda}$ in RMS wavefront error and 0.75 in MTF value at 660 nm. Considering the manufacturing and assembling phase, we determined the alignment compensation due to the tertiary mirror from the sensitivity, and derived the tilt-tolerance range to be 0.17 mrad. The off-axis three-mirror telescope, which has better performance than the fore optics of other hyperspectral sensors and is fitted for a small UAV, will contribute to ocean remote-sensing research.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF

Analysing the Relationship Between Tree-Ring Growth of Quercus acutissima and Climatic Variables by Dendroclimatological Method (연륜기후학적 방법에 의한 상수리나무의 연륜생장과 기후인자와의 관계분석)

  • Moon, Na Hyun;Sung, Joo Han;Lim, Jong Hwan;Park, Ko Eun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • This study was conducted to analyze the relationship between tree-ring growth of Quercus acutissima and climatic variables by dendroclimatological method. Annual tree-ring growth data of Quercus acutissima collected by the $5^{th}$ National Forest Inventory (NFI5) were organized to analyze the spatial distribution of the species growth pattern. To explain the relationship between tree-ring growth of Quercus acutissima and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, four clusters were identified. In addition, index chronology of Quercus acutissima for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Quercus acutissima and for predicting changes in tree growth patterns caused by climate change.

Application and Evaluation of Remotely Sensed Data in Semi-Distributed Hydrological Model (준 분포형 수문모형에서의 원격탐사자료의 적용 및 평가)

  • Kim, Byung-Sik;Kim, Kyung-Tak;Park, Jung-Sool;Kim, Hung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.144-159
    • /
    • 2006
  • Hydrological models are tools intended to realistically represent the basin's complex system in which hydrological characteristics result from a number of physical, vegetative, climatic, and anthropomorphic factors. Spatially distributed hydrological models were first developed in the 1960s, Remote sensing(RS) data and Geographical Information System(GIS) play a rapidly increasing role in the field of hydrology and water resources development. Although very few remotely sensed data can applied in hydrology, such information is of great. One of the greatest advantage of using RS data for hydrological modeling and monitoring is its ability to generate information in spatial and temporal domain, which is very crucial for successful model analysis, prediction and validation. In this paper, SLURP model is selected as semi-distributed hydrological model and MODIS Leaf Area Index(LAI), Normalized Difference Vegetation Index(NDVI) as Remote sensing input data to hydrological modeling of Kyung An-chen basin. The outlet of the Kyung An stage site was simulated, We evaluated two RS data, based on ability of SLURP model to simulate daily streamflows, and How the two RS data influence the sensitivity of simulated Evapotranspiration.

  • PDF

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.