• Title/Summary/Keyword: Spatial Regression Model

Search Result 377, Processing Time 0.026 seconds

Assessing the Impacts of Errors in Coarse Scale Data on the Performance of Spatial Downscaling: An Experiment with Synthetic Satellite Precipitation Products

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.445-454
    • /
    • 2017
  • The performance of spatial downscaling models depends on the quality of input coarse scale products. Thus, the impact of intrinsic errors contained in coarse scale satellite products on predictive performance should be properly assessed in parallel with the development of advanced downscaling models. Such an assessment is the main objective of this paper. Based on a synthetic satellite precipitation product at a coarse scale generated from rain gauge data, two synthetic precipitation products with different amounts of error were generated and used as inputs for spatial downscaling. Geographically weighted regression, which typically has very high explanatory power, was selected as the trend component estimation model, and area-to-point kriging was applied for residual correction in the spatial downscaling experiment. When errors in the coarse scale product were greater, the trend component estimates were much more susceptible to errors. But residual correction could reduce the impact of the erroneous trend component estimates, which improved the predictive performance. However, residual correction could not improve predictive performance significantly when substantial errors were contained in the input coarse scale data. Therefore, the development of advanced spatial downscaling models should be focused on correction of intrinsic errors in the coarse scale satellite product if a priori error information could be available, rather than on the application of advanced regression models with high explanatory power.

Analysis of Factors Affecting the Spatial Distribution of Highly Educated Human Capital: Focusing on Master's and Doctorate Group (고학력 인적 자본의 공간적 분포에 미치는 요인분석 - 석·박사 집단을 중심으로 -)

  • KIM, Soyoung;KIM, Donghyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.64-77
    • /
    • 2021
  • The purpose of this study is to examine the spatial distribution of highly educated human capital and to identify key factors affecting their spatial distribution. We analyzed the spatial concentration and inequality using Gini's coefficient and exploratory spatial data analysis and identified the economic and amenity factors to affect the spatial concentration of highly educated human capital using spatial regression model. The findings show that the spatial pattern of highly educated human capital is concentrated, imbalanced, and clustered in Capital region and part of Chungcheong and Gangwon region. The spatial concentration were more affected by economic factor than by amenity factors. This study provides some implication on the regional economic strategies to attract the human capital.

APPLICATION OF LOGISTIC REGRESSION MODEL AND ITS VALIDATION FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AND REMOTE SENSING DATA AT PENANG, MALAYSIA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.310-313
    • /
    • 2004
  • The aim of this study is to evaluate the hazard of landslides at Penang, Malaysia, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from TM satellite images; and the vegetation index value from SPOT satellite images. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by logistic regression model. The results of the analysis were verified using the landslide location data and compared with probabilistic model. The validation results showed that the logistic regression model is better prediction accuracy than probabilistic model.

  • PDF

A spatial panel regression model for household final consumption expenditure based on KTX effects (공간패널모형을 이용한 KTX 개통이 지역소비에 미친 영향 분석)

  • Na, Young;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1147-1154
    • /
    • 2016
  • Impact of Korea train express (KTX) on the regional economy in Korea has been studied by many researchers. Current research is limited in the lack of quantitative research using a statistical model to study the effect of KTX on regional economy. This paper analyses the influence of KTX to the household final consumption expenditure, which is one of important regional economic index, using spatial panel regression model. The spatial structure is introduced through spatial autocorrelation matrix using adjacency of KTX connection. The result shows a significant effect of Korea train express on the regional economy.

Analysis of the Characteristics of Subway Influence Areas Using a Geographically Weighted Regression Model (지리가중회귀모델을 이용한 역세권 공간구조 특성 분석)

  • Sim, Jun-Seok;Kim, Ho-Yong;Nam, Kwang-Woo;Lee, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2013
  • For the sake of the Transit-Oriented Development that has been prominent recently, an analysis of the spatial structures of transit centers, above all, should be carried out at a local level. This study, thus, analyzes the spatial structures of subway influence areas by applying a Geographically Weighted Regression (GWR) model to individual parcels. As a result of the validity analysis of the model, it has turned out that the subway influence areas have different characteristics respectively, and there is spatial heterogeneity even in the same single area. Also, the result of the comparison among models has proved that the GWR model is more adequate than the Ordinary Least Square (OLS) model and $R^2$ has been also increased in the GWR model. Then, the results have been mapped by means of the GIS, which have made it possible to understand the spatial structures at a local level. If the Transit-Oriented Development is fulfilled in consideration of the spatial structural characteristics of the subway influence areas drawn respectively from the model analysis, it will be helpful in adopting effective policies.

Spatial Analysis of the Urban Heat Island Using a 3-D City Model (3차원 도시모형을 이용한 도시열섬의 공간분석)

  • Chun, Bum-Seok;Guldmann, Jean-Michel
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.1-16
    • /
    • 2012
  • There is no doubt that the urban heat island (UHI) is a mounting problem in built-up environments, due to energy retention by the surface materials of dense buildings, leading to increased temperatures, air pollution, and energy consumption. To investigate the UHI, three-dimensional (3-D) information is necessary to analyze complex sites, including dense building clusters. In this research, 3-D building geometry information is combined with two-dimensional (2-D) urban surface information to examine the relationship between urban characteristics and temperature. In addition, this research introduces spatial regression models to account for the spatial spillover effects of urban temperatures, and includes the following steps: (a) estimating urban temperatures, (b) developing a 3-D city model, (c) generating urban parameters, and (d) conducting statistical analyses using both Ordinary Least-Squares (OLS) and Spatial Regression Models. The results demonstrate that 3-D urban characteristics greatly affect temperatures and that neighborhood effects are critical in explaining temperature variations. Finally, the implications of the results are discussed, providing guidelines for policies to reduce the UHI.

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Spatial Econometrics Analysis of Fire Occurrence According to Type of Facilities (시설물 유형에 따른 화재 발생의 공간 계량 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.129-141
    • /
    • 2019
  • In recent years, fast growing cities in Korea are showing signs of being vulnerable to more disasters as their population and facilities increase and intensify. In particular, fire is one of the most common disasters in Korea's cities, along with traffic accidents. Therefore, in this study, we analyze what type of factors affect the fire that threatens urban people. Fire data were acquired for 10 years, from 2007 to 2017, in Jinju, Korea. Spatial distribution pattern of fire occurrence in Jinju was assessed through the spatial autocorrelation analysis. First, spatial autocorrelation analysis was carried out to grasp the spatial distribution pattern of fire occurrence in Jinju city. In addition, correlation and multiple regression analysis were used to confirm spatial dependency and abnormality among factors. Based on this, OLS (Ordinary Least Square) regression analysis was performed using space weighting considering fire location and spatial location of each facility. As a result, First, LISA (Local Indicator of Spatial Association) analysis of the occurrence of fire in Jinju shows that the most central commercial area are fire department, industrial area, and residential area. Second, the OLS regression model was analyzed by applying spatial weighting, focusing on the most derived factors of multiple regression analysis, by integrating population and social variables and physical variables. As a result, the second kind of neighborhood living facility showed the highest correlation with the fire occurrence, followed by the following in the order of single house, sales facility, first type of neighborhood living facility, and number of households. The results of this study are expected to be useful for analyzing the fire occurrence factors of each facility in urban areas and establishing fire safety measures.

Quadratic Programming Approach to Pansharpening of Multispectral Images Using a Regression Model

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.257-266
    • /
    • 2008
  • This study presents an approach to synthesize multispectral images at a higher resolution by exploiting a high-resolution image acquired in panchromatic modality. The synthesized images should be similar to the multispectral images that would have been observed by the corresponding sensor at the same high resolution. The proposed scheme is designed to reconstruct the multispectral images at the higher resolution with as less color distortion as possible. It uses a regression model of the second order to fit panchromatic data to multispectral observations. Based on the regression model, the multispectral images at the higher spatial resolution of the panchromatic image are optimized by a quadratic programming. In this study, the new method was applied to the IKONOS 1m panchromatic and 4m multispectral data, and the results were compared with them of several current approaches. Experimental results demonstrate that the proposed scheme can achieve significant improvement over other methods.

Production of Agrometeorological Information in Onion Fields using Geostatistical Models (지구 통계 모형을 이용한 양파 재배지 농업기상정보 생성 방법)

  • Im, Jieun;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.509-518
    • /
    • 2018
  • Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.