• Title/Summary/Keyword: Spatial Optimization Algorithms

Search Result 46, Processing Time 0.017 seconds

Basic Study on Spatial Optimization Model for Sustainability using Genetic Algorithm - Based on Literature Review - (유전알고리즘을 이용한 지속가능 공간최적화 모델 기초연구 - 선행연구 분석을 중심으로 -)

  • Yoon, Eun-Joo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.133-149
    • /
    • 2017
  • As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.

Optimization of spatial truss towers based on Rao algorithms

  • Grzywinski, Maksym
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.367-378
    • /
    • 2022
  • In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Simultaneous analysis, design and optimization of trusses via force method

  • Kaveh, A.;Bijari, Sh.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, the Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization (ECBO) and Vibrating Particles System (VPS) algorithms and the force method are used for the simultaneous analysis and design of truss structures. The presented technique is applied to the design and analysis of some planer and spatial trusses. An efficient method is introduced using the CBO, ECBO and VPS to design trusses having members of prescribed stress ratios. Finally, the minimum weight design of truss structures is formulated using the CBO, ECBO and VPS algorithms and applied to some benchmark problems from literature. These problems have been designed by using displacement method as analyzer, and here these are solved for the first time using the force method. The accuracy and efficiency of the presented method is examined by comparing the resulting design parameters and structural weight with those of other existing methods.

The Optimization of Truss Structures with Genetic Algorithms

  • Wu, Houxiao;Luan, Xiaodong;Mu, Zaigen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.117-122
    • /
    • 2005
  • This paper investigated the optimum design of truss structures based on Genetic Algorithms (GA's). With GA's characteristic of running side by side, the overall optimization and feasible operation, the optimum design model of truss structures was established. Elite models were used to assure that the best units of the previous generation had access to the evolution of current generation. Using of non-uniformity mutation brought the obvious mutation at earlier stage and stable mutation in the later stage; this benefited the convergence of units to the best result. In addition, to avoid GA's drawback of converging to local optimization easily, by the limit value of each variable was changed respectively and the genetic operation was performed two times, so the program could work more efficiently and obtained more precise results. Finally, by simulating evolution process of nature biology of a kind self-organize, self-organize, artificial intelligence, this paper established continuous structural optimization model for ten bars cantilever truss, and obtained satisfactory result of optimum design. This paper further explained that structural optimization is practicable with GA's, and provided the theoretic basis for the GA's optimum design of structural engineering.

  • PDF

The Shape Optimization Design of Space Trusses Using Genetic Algorithms (퍼지-유전자 알고리즘에 의한 공간 트러스의 형상 최적화)

  • Park, Choon-Wook;Kim, Su-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.61-70
    • /
    • 2002
  • The objective of this study is the development of a size and shape discrete optimum design algorithms, which is based on the genetic algorithms and the fuzzy theory. This algorithms can perform both size and shape optimum designs of plane and space trusses. The developed fuzzy shape-GAs (FS-GAs) was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. This study solves the problem by introducing the FS-GAs operators into the genetic.

  • PDF

Truss Topology Optimization Using Hybrid Metaheuristics (하이브리드 메타휴리스틱 기법을 사용한 트러스 위상 최적화)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.89-97
    • /
    • 2021
  • This paper describes an adaptive hybrid evolutionary firefly algorithm for a topology optimization of truss structures. The truss topology optimization problems begins with a ground structure which is composed of all possible nodes and members. The optimization process aims to find the optimum layout of the truss members. The hybrid metaheuristics are then used to minimize the objective functions subjected to static or dynamic constraints. Several numerical examples are examined for the validity of the present method. The performance results are compared with those of other metaheuristic algorithms.

Comparison of Spatial Optimization Techniques for Solving Visibility Location Problem (가시권 문제를 위한 공간최적화 기법 비교 연구)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.156-170
    • /
    • 2006
  • Determining the best visibility positions on terrain surface has been one of the frequently used analytical issues in GIS visibility analysis and the search for a solution has been carried out effectively using spatial search techniques. However, the spatial search process provides operational and methodological challenges for finding computational algorithms suitable for solving the best visibility site problem. For this problem, current GIS visibility analysis has not been successful due to limited algorithmic structure and operational performance. To meet these challenges, this paper suggests four algorithms explored robust search techniques: an extensive iterative search technique; a conventional solution based on the Tornqvist algorithm; genetic algorithm; and simulated annealing technique. The solution performance of these algorithms is compared on a set of visibility location problems and the experiment results demonstrate the useful feasibility. Finally, this paper presents the potential applicability of the new spatial search techniques for GIS visibility analysis by which the new search algorithms are of particular useful for tackling extensive visibility optimization problems as the next GIS analysis tool.

  • PDF

A Study on Cost Estimation of Spatial Query Processing for Multiple Spatial Query Optimization in GeoSensor Networks (지오센서 네트워크의 다중 공간질의 최적화를 위한 공간질의처리비용 예측 알고리즘 연구)

  • Kim, Min Soo;Jang, In Sung;Li, Ki Joune
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.23-33
    • /
    • 2013
  • W ith the recent advancement of IoT (Internet of Things) technology, there has been much interest in the spatial query processing which energy-efficiently acquires sensor readings from sensor nodes inside specified geographical area of interests. Therefore, various kinds of spatial query processing algorithms and distributed spatial indexing methods have been proposed. They can minimize energy consumption of sensor nodes by reducing wireless communication among them using in-network spatial filtering technology. However, they cannot optimize multiple spatial queries which w ill be w idely used in IoT, because most of them have focused on a single spatial query optimization. Therefore, we propose a new multiple spatial query optimization algorithm which can energy-efficiently process multiple spatial queries in a sensor network. The algorithm uses a concept of 'query merging' that performs the merged set after merging multiple spatial queries located at adjacent area. Here, our algorithm makes a decision on which is better between the merged and the separate execution of queries. For such the decision making, we additionally propose the cost estimation method on the spatial query execution. Finally, we analyze and clarify our algorithm's distinguished features using the spatial indexing methods of GR-tree, SPIX, CPS.