• Title/Summary/Keyword: Spatial Operators

Search Result 93, Processing Time 0.02 seconds

Desgin of a Spatial QueryExecutor using Tag Technique (태그 기법을 이용한 공간 질의 수행기의 설계)

  • Lee, Chan-Geun;Park, Ho-Hyeon;Lee, Yong-Ju;Jeong, Jin-Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.5
    • /
    • pp.543-552
    • /
    • 1999
  • The iterator technique which is used for implementing physical operators of the query executor is known for its efficiency and extensibility. The most widely used technique for processing an operator on spatial objects is to process by dividing it into the filter step and the refinement step. Recently, there was a research for an optimizer which can generate more efficient query execution plans than those of traditional methods by separating a spatial operator into filter and refinement steps in the level of the object algebra. But, traditional query executors were not designed considering such query execution plans. So they have no function of transmitting the result of the filter operation between operators. We propose two methods, the probe technique and the tag technique, which transmit the result of the filter operator when using the iterator in the query execution plan in which operators are separated by filter/refinement steps and other operators can be allowed between the steps. Whereas the probe technique extends the state record within an operator, the tag technique stores the result of a filter step in an intermediate result in the form of the tag. Based on the comparison of these methods, we design and implement a query executor using the tag technique that is superior in extensibility. The implemented query executor can execute operations defined in the Spatial Object Algebra(SOA) to process an extended OQL for spatial queries.

Prediction of Land-cover Change in the Gongju Areas using Fuzzy Logic and Geo-spatial Information (퍼지 논리와 지리공간정보를 이용한 공주지역 토지피복 변화 예측)

  • Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.387-402
    • /
    • 2005
  • In this study, we tried to predict the change of future land-cover and relationships between land-cover change and geo-spatial information in the Gongju area by using fuzzy logic operation. Quantitative evaluation of prediction models was carried out using a prediction rate curve using. Based on the analysis of correlations between the geo-spatial information and land-cover change, the class with the highest correlation was extracted. Fuzzy operations were used to predict land-cover change and determine the land-cover prediction maps that were the most suitable. It was predicted that in urban areas, the urban expansion of old and new towns would occur centering on the Gem-river, and that urbanization of areas along the interchange and national roads would also expand. Among agricultural areas, areas adjacent to national roads connected to small tributaries of the Gem-river and neighboring areas would likely experience changes. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the possibility of forest damage is very high. As a result of validation using the prediction rate curve, it was indicated that among fuzzy operators, the maximum fuzzy operator was the most suitable for analyzing land-cover change in urban and agricultural areas. Other fuzzy operators resulted in the similar prediction capabilities. However, in the prediction rate curve of integrated models for land-cover prediction in the forest areas, most fuzzy operators resulted in poorer prediction capabilities. Thus, it is necessary to apply new thematic maps or prediction models in connection with the effective prediction of changes in the forest areas.

Analyzing the Ambiguities of Spatial Operators in OpenGIS (OpenGIS공간 연산자 구현시의 모호성 분석)

  • 정소영;홍은지;유석인
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.105-107
    • /
    • 1998
  • 지리 정보 시스템(Geographic Information System, GIS)에서 이용되는 공간 데이터 모델의 표준 규약인 OpenGIS 명세서(specification)를 이용하여 공간 관계 연산자(Spatial Relational Operator)를 구현하고자 할 때 세부적인 의미가 명확하게 이해되지 않는 경우가 많다. 본 논문에서는 각각의 공간 객체들의 내부(Interior), 외부(Exterior), 경계(Boundary)의 정의를 이용하여 실제로 공간 연산자를 구현할 때 고려해야 하는 의미의 불확실성에 대해 고찰하여, 세부적 의미를 밝힌다.

A Spatial Query Model Supporting Users View based on Object-oriented Paradigm (객체지향 패러다임에 기반한 사용자 관점지원 공간질의 모델)

  • Go, Myeong-Cheol;O, Hyeon-Seok;Ju, In-Hak;Choe, Yun-Cheol
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Spatial analysis in GIS provides an important way that helps the end-users decision-making. For such a reason, query model for analysis should be able to support the users view conceptually in constructing query statements. The traditional approaches in design of query model used to extend the functionality of model that basically designed for manipulation of attribute-operations by appending operators for spatial operations to the query statements of model. However, by the reason of spatial operation's characteristics that are different from those of attribute operations In nature, the structures of query statements in previous approaches are unnatural, inconsistent, and therefore those query models in previous approaches are not able to support the users view in retrieving analysis. In this paper, we proposed the methodology for constructing of user query and internal processing this query based on object-oriented paradigm, in the view of spatial operations by using the basic concept that spatial query is a methodology for spatial analysis. In addition, we presented a strong possibility of designing spatial query model that might actively have interaction with its user by implementing CIW(Class-Information Window) query interface corresponded with the methodology proposed in this paper.

  • PDF

Scaling Network Information Services to Support HetNets and Dynamic Spectrum Access

  • Piri, Esa;Schulzrinne, Henning
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.202-208
    • /
    • 2014
  • Wireless network information services allow end systems to discover heterogeneous networks and spectrum available for secondary use at or near their current location, helping them to cope with increasing traffic and finite spectrum resources. We propose a unified architecture that allows end systems to find nearby base stations that are using either licensed, shared or unlicensed spectrum across multiple network operators. Our study evaluates the performance and scalability of spatial databases storing base station coverage area geometries. The measurement results indicate that the current spatial databases perform well even when the number of coverage areas is very large. A single logical spatial database would likely be able to satisfy the query load for a large national cellular network. We also observe that coarse geographic divisions can significantly improve query performance.

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

Rules for Control Propagation of Geospatial Data Generalization (공간데이터 일반화의 파급을 처리하기 위한 규칙)

  • Kang, He-Gyoung;Li, Ki-Joune
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.1 s.7
    • /
    • pp.5-14
    • /
    • 2002
  • The generalization of geospatial data is an important way in deriving a new database from an original one. The generalization of a geospatial object changes not only its geometric and aspatial attributes but also results in propagation to other objects along their relationship. We call it generalization propagation of geospatial databases. Without proper handling of the propagation, it brings about an inconsistent database or loss of semantics. Nevertheless, previous studies in the generalization have focused on the derivation of an object by isolating it from others. And they have proposed a set of generalization operators, which were intended to change the geometric and aspatial attributes of an object. In this paper we extend the definition of generalization operators to cover the propagation from an object to others. In order to capture the propagation, we discover a set of rules or constraints that must be taken into account during generalization procedure. Each generalization operator with constraints is expressed in relational algebra and it can be converted to SQL statements with ease. A prototype system was developed to verify the correctness of extended operators.

  • PDF

Parallel Spatial Join Method Using Efficient Spatial Relation Partition In Distributed Spatial Database Systems (분산 공간 DBMS에서의 효율적인 공간 릴레이션 분할 기법을 이용한 병렬 공간 죠인 기법)

  • Ko, Ju-Il;Lee, Hwan-Jae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.1 s.7
    • /
    • pp.39-46
    • /
    • 2002
  • In distributed spatial database systems, users nay issue a query that joins two relations stored at different sites. The sheer volume and complexity of spatial data bring out expensive CPU and I/O costs during the spatial join processing. This paper shows a new spatial join method which joins two spatial relation in a parallel way. Firstly, the initial join operation is divided into two distinct ones by partitioning one of two participating relations based on the region. This two join operations are assigned to each sites and executed simultaneously. Finally, each intermediate result sets from the two join operations are merged to an ultimate result set. This method reduces the number of spatial objects participating in the spatial operations. It also reduces the scope and the number of scanning spatial indices. And it does not materialize the temporary results by implementing the join algebra operators using the iterator. The performance test shows that this join method can lead to efficient use in terms of buffer and disk by narrowing down the joining region and decreasing the number of spatial objects.

  • PDF

A Study on Design Elements of Main Control Room in Nuclear Power Plants by Analyzing Space Characteristics (원자력발전소 주제어실의 공간특성에 따른 디자인 요소에 관한 연구)

  • Lee, Seung-Hoon;Lee, Tae-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.249-256
    • /
    • 2010
  • For guaranteeing for security of nuclear power plant, ergonomic factors have been applied to design of main control room, core area for management and control of nuclear power plant, but design elements for performance of operators have been ignored. As the behaviors of operators are important for security of nuclear power plant, space design which makes them pleasant psychologically and makes them maintain attention on security equipments ceaselessly is required. Therefore, the purpose of this study is to analyze space characteristics of main control rooms according to regulations of nuclear power plant and general guidelines of space design, and to offer basic data for designing of main control room which makes operators pleasant psychologically and physically. At first, theoretical issues related with design of main control room are reviewed and several premises of space are developed by abstracting design elements from common space and regulations of nuclear power plant and, then integrating each design elements interactively. In short, the improvement of system environment based on human-machine interface space has brought about perceptual, cognitive, and spatial changes and has realized next generation of main control rooms. And, differences and similarities between ordinary space and main control room, which ergonomic sizes and regulations are applied and is VDT environment based on LDP, are discussed in relation to 13 design elements and 17 space premise.