• 제목/요약/키워드: Spatial Object Model

검색결과 295건 처리시간 0.025초

근접수치사진측량을 위한 스마트폰 카메라 검보정 (Application of Smartphone Camera Calibration for Close-Range Digital Photogrammetry)

  • 윤명현;유연;최철웅;박진우
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.149-160
    • /
    • 2014
  • 최근 스마트폰에 내장된 센서 및 디바이스를 이용한 응용 개발 및 활용 방안에 대한 연구가 국내외에서 활발히 진행되고 있다. 본 연구의 목적은 스마트폰을 활용한 사진측량시스템 개발에 앞서 근접한 대상물의 3차원 위치결정에서의 스마트폰 영상의 정확도를 분석하고, 그 활용 가능성을 평가하는 것이다. 먼저, 자동 초점과 무한대 초점에서 카메라 검정이 수행되었다. 카메라 검정에서 렌즈 왜곡 계수의 결정은 balance 방식과 unbalance 방식의 왜곡 모델을 이용하였고, 16가지 프로젝트로 구분하여 검정한 결과, 모든 경우에 1 mm 이내의 번들조정 RMS 오차를 나타냈다. 또한 S와 S2 모델에 대한 자동 및 무한대 초점에서 왜곡 곡선의 패턴이 거의 유사하게 나타나 초점 모드에 따른 왜곡 패턴의 변화는 극히 미소한 것으로 판단된다. 자동과 무한대 초점에 따른 결과 비교와 다중영상 처리에 사용된 소프트웨어에 따른 결과 비교에서 모든 경우에 ${\pm}3$ mm 이내의 표준편차를 나타내어 초점 모드와 왜곡 모델에 따른 3차원 위치결정에서의 결과 차이는 거의 없는 것으로 판단된다. 끝으로 토탈스테이션에 의한 검사점 성과를 최확값으로 하고 각 프로젝트별로 결정된 검사점 성과를 관측값으로 하여 각 방법별 잔차에 대한 통계치를 계산한 결과, 모든 프로젝트에서 X, Z방향에 비해 촬영거리방향인 Y방향으로 비교적 큰 오차가 발생했다. 이상과 같이 근접 대상물의 3차원 위치결정에 있어 정확도 측면에서 스마트폰 카메라의 활용이 가능할 것으로 기대된다.

시간 관계성을 기반으로 한 비디오 데이터 모델의 설계 및 구현 (Design and Implementation of the Video Data Model Based on Temporal Relationship)

  • 최지희;용환승
    • 한국멀티미디어학회논문지
    • /
    • 제2권3호
    • /
    • pp.252-264
    • /
    • 1999
  • 비디오 데이터 자체가 시간적 구조와 공간적 구조로 이루어져 있기 때문에 비디오 데이터에 대한 내용 기반 검색은 두 관계를 중섬으로 이루어 질 수 있다. 본 논문에서는 비디오 데이터 구조가 시간의 흐름에 따라 논리적 계충 구조로 표현 가능하며, 각각의 계층은 각기 시간의 흐름에 따라 시간 관계성을 지닌다는 특성을 반영한 검색 기능을 설계하였다 그리고 비디오 데이터의 시간적 관계를 계승, 캡슐화, 함수 중복 등의 객체 지향 특성을 이용하여 객체 관계 DBMS로 구현하였다 기존의 제한적인 시간 함수가 아닌 본 논문에서 제시한 다양한 비디오 데이터의 시간 관계성에 따른 좀 더 확장되고 다양한 시간 함수를 제공함으로 써, 사용하기 편리한 인터페이스와, 여러 가지 시간 질의어를 제공한다.

  • PDF

A COMPARISON OF OBJECTED-ORIENTED AND PIXELBASED CLASSIFICATION METHODS FOR FUEL TYPE MAP USING HYPERION IMAGERY

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.297-300
    • /
    • 2006
  • The knowledge of fuel load and composition is important for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential of reduction the uncertainty in mapping fuels and offers the best approach for improving our abilities. This paper compared the results of object-oriented classification to a pixel-based classification for fuel type map derived from Hyperion hyperspectral data that could be enable to provide this information and allow a differentiation of material due to their typical spectra. Our methodological approach for fuel type map is characterized by the result of the spectral mixture analysis (SMA) that can used to model the spectral variability in multi- or hyperspectral images and to relate the results to the physical abundance of surface constitutes represented by the spectral endmembers. Object-oriented approach was based on segment based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery

  • PDF

동적인 배경에서의 사람 검출 알고리즘 (People Detection Algorithm in Dynamic Background)

  • 최유정;이동렬;김윤
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

HEVC 스트림 상에서의 객체 추적 방법 (Object Tracking in HEVC Bitstreams)

  • 박동민;이동규;오승준
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.449-463
    • /
    • 2015
  • 동영상에서의 객체 추적은 보안, 색인 및 검색, 감시, 통신, 압축 등 다양한 분야에서 중요하다. 본 논문은 HEVC 비트스트림 상에서의 객체 추적 방법을 제안한다. 복호화를 수행하지 않고, 비트스트림 상에 존재하는 움직임 벡터(MV : Motion Vector)와 부호화 크기 정보를 Spatio-Temporal Markov Random Fields (ST-MRF) 모델에 적용해 객체 움직임의 공간적 및 시간적 특성을 반영한다. 변환계수를 특징점으로 활용하는 객체형태 조정 알고리즘을 적용해 ST-MRF 모델 기반 객체 추적방법에서 나타나는 과분할에 의한 오차전파 문제를 해결한다. 제안하는 방법의 추적성능은 정확도 86.4%, 재현율 79.8%, F-measure 81.1%로 기존방법 대비 평균 F-measure는 약 0.2% 향상하지만 기존방법에서 과분할 및 오차전파가 두드러지는 영상에 대해서는 최대 9% 정도의 성능향상을 보인다. 전체 수행시간은 프레임 당 평균 5.4ms이며 실시간 추적이 가능하다.

효과적인 도로 상황 인지를 위한 도로 객체 그래프 모델링 방법 (Road Object Graph Modeling Method for Efficient Road Situation Recognition)

  • ;정성모;송석일
    • Journal of Platform Technology
    • /
    • 제9권4호
    • /
    • pp.3-9
    • /
    • 2021
  • 이 논문에서는 차량 또는 도로 인프라 센서에 의해 검출된 도로상의 각 객체들 간의 상황인지를 효과적으로 하기 위해서 그래프 데이터 모델을 도입한다. 제안하는 방법은 도로상의 각 객체들을 그래프의 정점(Vertex)로, 객체들 간의 관계를 그래프의 간선(Edge)로 모델링하여 그래프 데이터베이스를 구축하고, 객체의 속성과 간선의 속성을 실시간으로 업데이트한다. 이때 간선으로 표현되는 객체들 간의 관계는 각 객체의 위치, 이동방향, 이동속도 등을 고려하여 객체들 간에 근접 가능성이 있을 경우 설정한다. 또한, 제안하는 그래프 모델링 방법을 통해 표현한 도로 객체 그래프 데이터베이스를 실시간으로 업데이트하기 위해 그래프 정점과 간선에 대한 공간 색인 기법을 제안한다. 제안하는 색인기법 기반의 그래프 데이터베이스 업데이트 성능을 평가하기 위해서 색인 없이 업데이트하는 방법과 비교하였으며 비교결과 제안하는 방법이 10배 더 빠르게 업데이트를 할 수 있음을 확인하였다.

Improving the quality of light-field data extracted from a hologram using deep learning

  • Dae-youl Park;Joongki Park
    • ETRI Journal
    • /
    • 제46권2호
    • /
    • pp.165-174
    • /
    • 2024
  • We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법 (A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects)

  • 박종현;박순영;오일환
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1902-1911
    • /
    • 1999
  • 본 논문에서는 객체들의 공간적 특성이 반영된 시각적인 특징벡터를 이용한 내용기반 영상검색 알고리즘을 제안한다. 제안된 검색 기법은 여러 색상으로 이루어진 객체들을 표현하기 위하여 가우시안 혼성 모델을 적용하여 모델의 최대유사 파라미터는 EM 알고리즘을 사용하여 추정한다. GMM을 기반으로 하여 분할된 각 객체들로부터 Fourier descriptor의 색상 히스토그램을 사용하여 모양과 색상 특징을 추출하게 된다. 영상 검색은 두 단계로 구성되는데 첫 단계에서는 공간적인 모양 특성을 추출하여 모양이 유사한 객체들을 후보 영상으로 압축하게 되며 마지막으로 객체의 색상 히스토그램에 의하여 검색이 수행된다. 실험 결과 제안된 알고리즘은 분할된 객체의 공간적, 시각적 특징을 이용하여 효율적으로 검색을 수행할 수 있음을 보여준다.

  • PDF

3D Laser Scanning을 이용한 댐체의 안정성 검토 (A Examination on Stability of Dam using 3D Laser Scanning System)

  • 이재원;손호웅;윤부열
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.451-454
    • /
    • 2007
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF