DOI QR코드

DOI QR Code

Application of Smartphone Camera Calibration for Close-Range Digital Photogrammetry

근접수치사진측량을 위한 스마트폰 카메라 검보정

  • Yun, MyungHyun (Korea Oceanographic and Hydrographic Association) ;
  • Yu, Yeon (Spatial Information Institute, Pukyoung National University) ;
  • Choi, Chuluong (Department of Spatial Information Engineering, Pukyoung National University) ;
  • Park, Jinwoo (Department of Spatial Information Engineering, Pukyoung National University)
  • 윤명현 (한국해양조사협회) ;
  • 유연 (부경대학교 공간정보시스템공학과) ;
  • 최철웅 (부경대학교 공간정보연구소) ;
  • 박진우 (부경대학교 공간정보연구소)
  • Received : 2014.01.27
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

Recently studies on application development and utilization using sensors and devices embedded in smartphones have flourished at home and abroad. This study aimed to analyze the accuracy of the images of smartphone to determine three-dimension position of close objects prior to the development of photogrammetric system applying smartphone and evaluate the feasibility to use. First of all, camera calibration was conducted on autofocus and infinite focus. Regarding camera calibration distortion model with balance system and unbalance system was used for the decision of lens distortion coefficient, the results of calibration on 16 types of projects showed that all cases were in RMS error by less than 1 mm from bundle adjustment. Also in terms of autofocus and infinite focus on S and S2 model, the pattern of distorted curve was almost the same, so it could be judged that change in distortion pattern according to focus mode is very little. The result comparison according to autofocus and infinite focus and the result comparison according to a software used for multi-image processing showed that all cases were in standard deviation less than ${\pm}3$ mm. It is judged that there is little result difference between focus mode and determination of three-dimension position by distortion model. Lastly the checkpoint performance by total station was fixed as most probable value and the checkpoint performance determined by each project was fixed as observed value to calculate statistics on residual of individual methods. The result showed that all projects had relatively large errors in the direction of Y, the direction of object distance compared to the direction of X and Z. Like above, in terms of accuracy for determination of three-dimension position for a close object, the feasibility to use smartphone camera would be enough.

최근 스마트폰에 내장된 센서 및 디바이스를 이용한 응용 개발 및 활용 방안에 대한 연구가 국내외에서 활발히 진행되고 있다. 본 연구의 목적은 스마트폰을 활용한 사진측량시스템 개발에 앞서 근접한 대상물의 3차원 위치결정에서의 스마트폰 영상의 정확도를 분석하고, 그 활용 가능성을 평가하는 것이다. 먼저, 자동 초점과 무한대 초점에서 카메라 검정이 수행되었다. 카메라 검정에서 렌즈 왜곡 계수의 결정은 balance 방식과 unbalance 방식의 왜곡 모델을 이용하였고, 16가지 프로젝트로 구분하여 검정한 결과, 모든 경우에 1 mm 이내의 번들조정 RMS 오차를 나타냈다. 또한 S와 S2 모델에 대한 자동 및 무한대 초점에서 왜곡 곡선의 패턴이 거의 유사하게 나타나 초점 모드에 따른 왜곡 패턴의 변화는 극히 미소한 것으로 판단된다. 자동과 무한대 초점에 따른 결과 비교와 다중영상 처리에 사용된 소프트웨어에 따른 결과 비교에서 모든 경우에 ${\pm}3$ mm 이내의 표준편차를 나타내어 초점 모드와 왜곡 모델에 따른 3차원 위치결정에서의 결과 차이는 거의 없는 것으로 판단된다. 끝으로 토탈스테이션에 의한 검사점 성과를 최확값으로 하고 각 프로젝트별로 결정된 검사점 성과를 관측값으로 하여 각 방법별 잔차에 대한 통계치를 계산한 결과, 모든 프로젝트에서 X, Z방향에 비해 촬영거리방향인 Y방향으로 비교적 큰 오차가 발생했다. 이상과 같이 근접 대상물의 3차원 위치결정에 있어 정확도 측면에서 스마트폰 카메라의 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Akca, D. and A. Gruen, 2009. Comparative geometric and radiometric evaluation of mobile phone and still video cameras, The Photogrammetric Record, 24(127): 217-245. https://doi.org/10.1111/j.1477-9730.2009.00541.x
  2. Cho, W.S., 2003. Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photogrammetric Perspective, The Korea Society of Remote Sensing, 19(6): 431-445 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2003.19.6.431
  3. CITRIS, 2011. http://ishakeberkeley.appspot.com/
  4. Fraser, C.S., 1997. Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing, 52(4): 149-159. https://doi.org/10.1016/S0924-2716(97)00005-1
  5. Fraser, C.S., and S. Al-Ajlouni, 2006. Zoom-dependent camera calibration in digital close- range photogrammetry, Photogrammetric Engineering & Remote Sensing, 72(9): 1017-1026. https://doi.org/10.14358/PERS.72.9.1017
  6. Ha, D.S., and S.J. Park, 2011. Smart-Phone based User Movement State Identification Algorithm, Journal of the Korea society of computer and information, 16(3): 167-174 (in Korean with English abstract). https://doi.org/10.9708/jksci.2011.16.3.167
  7. Habib, A., and M. Morgan, 2003. Automatic calibration of low-cost digital cameras, Journal of Optical Engineering, 42(4): 948-955. https://doi.org/10.1117/1.1555732
  8. Jeong, S., 2009. The Analysis of 3-Dimensional Shape Using Non-Metric Cameras, The Korea Society for Geospatial Information System, 17(2): 91-99 (in Korean with English abstract).
  9. KIWIPLE, 2010. http://kiwiple.com/about/
  10. Kraus K., 1993. Photogrammetry Volume I. Duummler Verlag, Bonn., pp.277-279.
  11. Mobile Millennium Project, 2009. http://traffic.berkeley.edu/
  12. Oh, T.W., and I.P. Lee, 2010. Research Articles: Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System, Korea Society of Remote Sensing, 26(5): 593-603 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.5.593
  13. Pullivelli, A.M., 2005. Low-cost digital cameras: calibration, stability analysis, and applications, University of Calgary, pp. 9.
  14. Takeuchi, K., and P.J. Kennelly, 2010. iSeismometer: A geoscientific iPhone application, Computers & Geosciences, 36: 573-575. https://doi.org/10.1016/j.cageo.2009.09.012
  15. Yoo, H.H., S.Y. Jeong, and S.S. Kim, 2003. Evaluation for Geometric Calibration Accuracy of Zoomlens CCD Camera, Korean Society of Surveying Geodesy Photogrammetry and Cartography, 21(3): 245-254 (in Korean with English abstract).

Cited by

  1. 스마트기기를 활용한 수준측량장비 개발 및 성능분석 vol.17, pp.6, 2014, https://doi.org/10.5392/jkca.2017.17.06.001