• 제목/요약/키워드: Spatial Measurement Model

검색결과 215건 처리시간 0.04초

Research on Factors Affecting South Korea's OFDI Based on a Spatial Measurement Model

  • Su, Shuai;Zhang, Fan
    • Journal of Korea Trade
    • /
    • 제26권1호
    • /
    • pp.99-112
    • /
    • 2022
  • Purpose - This paper empirically investigates via a spatial lag model from the perspective of space economy to find the influencing factors of South Korea's OFDI along with 60 countries. Design/methodology - In the study of regional economic phenomena, we must first test the corresponding spatial correlation, and on this basis, complete the construction of the spatial model. For the target research object, after testing the spatial correlation, if there is spatial correlation, a spatial measurement model is needed. This paper uses the global Moran's I index for calculation. Based on the characteristics and research needs of the research object, this paper selects the spatial lag model to verify the existence of the spatial effect and factors affecting OFDI. Findings - Our results show that export scale, infrastructure, technology level, political stability, resource endowment, market size, distance and labor cost have a certain impact on Korea's OFDI, but at present the distance and market size factors are the most important influencing factors for South Korea's OFDI, The technical level and political stability have little effect on South Korea's OFDI, and are not main factors determining South Korea's OFDI. Originality/value - Through spatial measurement verification, it was found that the spatial effect has a significant impact on OFDI, along with more than 60 countries. On this basis, relevant suggestions are put forward, which have strong practical significance for South Korea's OFDI to achieve healthy and sustainable development.

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

Spatiotemporal Location Fingerprint Generation Using Extended Signal Propagation Model

  • Kim, Hee-Sung;Li, Binghao;Choi, Wan-Sik;Sung, Sang-Kyung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.789-796
    • /
    • 2012
  • Fingerprinting is a widely used positioning technology for received signal strength (RSS) based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the key factor of the positioning technology, temporal RSS variation needs to be considered for more accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. The proposed spatiotemporal fingerprint generation method consists of two algorithms running in parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location fingerprints at dense reference locations. The two different algorithms are connected by the extended signal propagation model which describes the spatial and temporal measurement characteristics in one frame. An experiment demonstrates that the proposed method provides an improved positioning accuracy.

Measurement Allocation by Shapley Value in Wireless Sensor Networks

  • Byun, Sang-Seon
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.38-42
    • /
    • 2018
  • In this paper, we consider measurement allocation problem in a spatially correlated sensor field. Our goal is to determine the probability of each sensor's being measured based on its contribution to the estimation reliability; it is desirable that a sensor improving the estimation reliability is measured more frequently. We consider a spatial correlation model of a sensor field reflecting transmission power limit, noise in measurement and transmission channel, and channel attenuation. Then the estimation reliability is defined distortion error between event source and its estimation at sink. Motivated by the correlation nature, we model the measurement allocation problem into a cooperative game, and then quantify each sensor's contribution using Shapley value. Against the intractability in the computation of exact Shapley value, we deploy a randomized method that enables to compute the approximate Shapley value within a reasonable time. Besides, we envisage a measurement scheduling achieving the balance between network lifetime and estimation reliability.

지형자료의 해상도와 공간보간기법에 따른 다차원 수리모형의 유출 특성 평가 (An Assessment on the Hydraulic Characteristics of a Multi-dimensional Model in Response to Measurement Resolution and Spatial Interpolation Methods)

  • 안정민;박인혁
    • 대한공간정보학회지
    • /
    • 제20권1호
    • /
    • pp.43-51
    • /
    • 2012
  • 수변공간 및 수자원에 대한 효율적 활용 요구가 증대됨에 따라 하천의 수리적인 특성을 보다 정밀하게 모의하고 이를 활용한 의사결정이 필요하다. EFDC 모형은 이러한 의사결정을 지원하기 위한 다차원 수리모형으로 3차원 정밀지형을 활용하여 수체의 수리적인 특성을 분석할 수 있다. 그러나 EFDC 모형의 입력자료로 활용되는 3차원 정밀지형의 경우, 측량간격과 지형보간기법에 의해 많은 영향을 받게 되며 3차원 정밀지형의 변화에 따라 대상 수체의 수리적인 특성이 영향을 받게 된다. 이에 본 연구에서는 다른 측량간격 및 지형보간기법에 따라 도출된 3차원 정밀지형이 EFDC 모형의 모의결과에 미치는 영향을 검토하였다. 연구 대상지역은 낙동강 금호강 유입구간이며, 검토 사상은 2006년 강우사상에 대한 수치모의를 수행하고, 면적-고도 곡선, 수위 및 유속의 모의결과를 비교 분석하였다. 분석결과, 동일한 측량 간격에서는 지형보간기법에 따른 면적고도곡선의 차이는 크지 않았으나, 측량 간격이 160m에서 모든 보간기법에서 차이가 발생하였고 측량간격이 80m 이상이 되면 하상단면의 변화가 발생하였다. 또한, 수위의 경우에 Kriging을 제외한 나머지 기법은 해상도에 따른 차이가 크지 않았고, Kriging은 160m 측량간격에서 다른 기법에 비해 차이가 크게 나타났다. 유속의 경우, 80m 측량간격이상에서 각 보간기법별 차이가 나타나기 시작했으며 160m 측량간격에서 Kriging은 다른 보간기법과 큰 차이를 보이는 것으로 나타났다.

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

LiDAR 데이터와 항공사진의 통합을 위한 사각 빌딩의 경계점 설정 (A Study for the Border line Extraction technique of City Spatial Building by LiDAR Data)

  • 연상호;이영욱
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.27-29
    • /
    • 2007
  • 도심지의 공간을 대부분 차지하고 있는 건물의 높이는 지상의 기준점으로 부터의 상대적인 수직거리로 산정하여 3차원의 정보이다. 그러나 지형도의 등고선으로는 알 수 없는 높이이므로 도심지의 스카이 라인이나 건물의 높이 등은 지도에 누락되어 실제적으로 도시계획과 공간 정보를 구축하기 위하여 별도의 측량을 실시하여야 한다. LIDAR는 레이저 스캐너를 항공기에 장착하여 레이저 펄스를 지표면에 주사하고 반사된 레이저 펄스의 도달 시간을 관측함으로써 반사 지점의 공간위치 좌표를 계산해 지표면에 대한 정보를 추출하는 측량기법으로 최근 새로운 지형정보 획득수단으로 부각되고 있다. 이러한 레이저 스캐닝은 센서와 지표면까지의 거리 및 방향을 관측하여 지표면 상의 표고점에 대한 3차원 좌표를 결정한다. 따라서 본 연구에서는 도심공간의 빌딩 및 지형지물에 관한 고밀도의 LiDAR 데이터를 수집하여 건물 중심을 설정하여 건물경계를 추출하여 3차원의 도심 빌딩을 보다 정확하게 생성할 수 있도록 하였다.

  • PDF

샤냑간섭계를 이용한 레이져빔의 Spatial Coherence Function 측정 (Measurement of Spatial Coherence Function of laser beam by using a Sagnac Interferometer)

  • Lee, Chang-Hyouck;Kang, Yoon-Shik;Sung, Yu-Gene;Noh, Jae-Woo
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.111-112
    • /
    • 2007
  • The spatial coherence function of laser beam was measured by using a Sagnac interferometer and self referencing technique. For laser beam passing through a narrow slit, absolute value of measured spatial coherence function becomes more symmetric as the slit size is reduced. For diverging beams, the spatial coherence function shows fast oscillations in its real and imaginary parts. We explain this by using a Gaussian Schell-model. One can use this measurement method to study and characterize the property of light field coming out of small sample.

  • PDF

A Comparison between In-situ PET and ENVI-met PET for Evaluating Outdoor Thermal Comfort

  • Jeong, Da-in;Park, Kyung-hun;Song, Bong-guen
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.11-19
    • /
    • 2016
  • Purpose: PMV, PET, and similar thermal comfort indices and microclimate modeling have recently become actively used to evaluate thermal comfort. This study will look at pedestrian roads with diverse spatial characteristics on university campus using the ENVI-met model as the base for onsite measurement. Method: The PET was used as the thermal comfort index. The first microclimate measures were collected on September 20, 2014, and the second microclimate measures were collected on June 1, 2015. The ENVI-met model was used at the same time. Result: As a results, Onsite measurement results differed depending on the PET spatial characteristics. The location associated with the most discomfort had a PET of $47.8^{\circ}C$. The spatial characteristics of this place included a with no shade. The most comfortable location had shade, and the PET was $24.6^{\circ}C$. When the ENVI-met model and onsite measurements were compared, similar patterns were found, but with a few differences at specific points; this was due to the limitation of using input materials such as trees, buildings, and covering materials with the ENVI-met model. This factor must be thoroughly considered when analyzing modeling results.

공간자료와 지면모형을 이용한 면적증발산 추정 (Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea)

  • 윤진일;남재철;홍석영;김준;김광수;정유란;채남이;최태진
    • 한국농림기상학회지
    • /
    • 제6권3호
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.