• Title/Summary/Keyword: Spatial Information Network

Search Result 1,073, Processing Time 0.037 seconds

LANDSLIDE SUSCEPTIBILITY ANALYSIS USING GIS AND ARTIFICIAL NEURAL NETWORK

  • Lee, Moung-Jin;Won, Joong-Sun;Lee, Saro
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.256-272
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the newly developed techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs, field survey data, and a spatial database of the topography, soil type, timber cover, geology and land use. The landslide-related factors (slope, aspect, curvature, topographic type, soil texture, soil material, soil drainage, soil effective thickness, timber type, timber age, and timber diameter, timber density, geology and land use) were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods. For this, the weights of each factor were determinated in 3 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated and the susceptibility maps were made with a GIS program. The results of the landslide susceptibility maps were verified and compared using landslide location data. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to maintain precision and accuracy.

  • PDF

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

Spatial Analysis Methods for Asbestos Exposure Research (석면노출연구를 위한 공간분석기법)

  • Kim, Ju-Young;Kang, Dong-Mug
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.369-379
    • /
    • 2012
  • Objectives: Spatial analysis is useful for understanding complicated causal relationships. This paper focuses trends and appling methods for spatial analysis associated with environmental asbestos exposure. Methods: Literature review and reflection of experience of authors were conducted to know academic background of spatial analysis, appling methods on epidemiology and asbestos exposure. Results: Spatial analysis based on spatial autocorrelation provides a variety of methods through which to conduct mapping, cluster analysis, diffusion, interpolation, and identification. Cause of disease occurrence can be investigated through spatial analysis. Appropriate methods can be applied according to contagiousness and continuity. Spatial analysis for asbestos exposure source is needed to study asbestos related diseases. Although a great amount of research has used spatial analysis to study exposure assessment and distribution of disease occurrence, these studies tend to focus on the construction of a thematic map without different forms of analysis. Recently, spatial analysis has been advanced by merging with web tools, mobile computing, statistical packages, social network analysis, and big data. Conclusions: Because the trend in spatial analysis has evolved from simple marking into a variety of forms of analyses, environmental researchers including asbestos exposure study are required to be aware of recent trends.

Spatial Reuse Algorithm Using Interference Graph in Millimeter Wave Beamforming Systems

  • Jo, Ohyun;Yoon, Jungmin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • This paper proposes a graph-theatrical approach to optimize spatial reuse by adopting a technique that quantizes the channel information into single bit sub-messages. First, we introduce an interference graph to model the network topology. Based on the interference graph, the computational requirements of the algorithm that computes the optimal spatial reuse factor of each user are reduced to quasilinear time complexity, ideal for practical implementation. We perform a resource allocation procedure that can maximize the efficiency of spatial reuse. The proposed spatial reuse scheme provides advantages in beamforming systems, where in the interference with neighbor nodes can be mitigated by using directional beams. Based on results of system level measurements performed to illustrate the physical interference from practical millimeter wave wireless links, we conclude that the potential of the proposed algorithm is both feasible and promising.

Geohashed Spatial Index Method for a Location-Aware WBAN Data Monitoring System Based on NoSQL

  • Li, Yan;Kim, Dongho;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.263-274
    • /
    • 2016
  • The exceptional development of electronic device technology, the miniaturization of mobile devices, and the development of telecommunication technology has made it possible to monitor human biometric data anywhere and anytime by using different types of wearable or embedded sensors. In daily life, mobile devices can collect wireless body area network (WBAN) data, and the co-collected location data is also important for disease analysis. In order to efficiently analyze WBAN data, including location information and support medical analysis services, we propose a geohash-based spatial index method for a location-aware WBAN data monitoring system on the NoSQL database system, which uses an R-tree-based global tree to organize the real-time location data of a patient and a B-tree-based local tree to manage historical data. This type of spatial index method is a support cloud-based location-aware WBAN data monitoring system. In order to evaluate the proposed method, we built a system that can support a JavaScript Object Notation (JSON) and Binary JSON (BSON) document data on mobile gateway devices. The proposed spatial index method can efficiently process location-based queries for medical signal monitoring. In order to evaluate our index method, we simulated a small system on MongoDB with our proposed index method, which is a document-based NoSQL database system, and evaluated its performance.

Distributed Grid Scheme using S-GRID for Location Information Management of a Large Number of Moving Objects (대용량 이동객체의 위치정보 관리를 위한 S-GRID를 이용한 분산 그리드 기법)

  • Kim, Young-Chang;Kim, Young-Jin;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.11-19
    • /
    • 2008
  • Recently, advances in mobile devices and wireless communication technologies require research on various location-based services. As a result, many studies on processing k-nearest neighbor query, which is most im portant one in location-based services, have been done. Most of existing studies use pre-computation technique to improve retrieval performance by computing network distance between POIs and nodes beforehand in spatial networks. However, they have a drawback that they can not deal with effectively the update of POIs to be searched. In this paper, we propose a distributed grid scheme using S-GRID to overcome the disadvantage of the existing work as well as to manage the location information of a large number of moving objects in efficient way. In addition, we describe a k-nearest neighbor(k-NN) query processing algorithm for the proposed distributed grid scheme. Finally, we show the efficiency of our distributed grid scheme by making a performance comparison between the k-NN query processing algorithm of our scheme and that of S-GRID.

  • PDF

Analysis of Longitudinal Slot Array Antenna in Rectangular Waveguide using Spatial Network Method (SNM) (공간회로망법을 이용한 축방향 슬롯 배열 도파관 안테나 해석)

  • Lee, Hee-Bock;Choi, Sung-Youl;Park, Kyoung-Soo;Kim, Jin;Lim, Young-Hwan;Ko, Young-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.416-419
    • /
    • 2000
  • A narrow slot in the broad wall of a rectangular waveguide is analysed using a Spatial Network Method[1] which takes account of the waveguide wall thickness. In essence, SNM is used to solve arbitrary shape and materials constant, derived from maxwell's equations to find the tangential electric fields on the upper and lower surfaces of the slot. In this paper, applying to the offset and length[2] which yield a zero equivalent shunt susceptance, analysing single and 4 array slot antenna. The current of the transient analysis shows each the times. Analysed result of SNM is verified by the method of moment and HFSS.

  • PDF

Refined identification of hybrid traffic in DNS tunnels based on regression analysis

  • Bai, Huiwen;Liu, Guangjie;Zhai, Jiangtao;Liu, Weiwei;Ji, Xiaopeng;Yang, Luhui;Dai, Yuewei
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.40-52
    • /
    • 2021
  • DNS (Domain Name System) tunnels almost obscure the true network activities of users, which makes it challenging for the gateway or censorship equipment to identify malicious or unpermitted network behaviors. An efficient way to address this problem is to conduct a temporal-spatial analysis on the tunnel traffic. Nevertheless, current studies on this topic limit the DNS tunnel to those with a single protocol, whereas more than one protocol may be used simultaneously. In this paper, we concentrate on the refined identification of two protocols mixed in a DNS tunnel. A feature set is first derived from DNS query and response flows, which is incorporated with deep neural networks to construct a regression model. We benchmark the proposed method with captured DNS tunnel traffic, the experimental results show that the proposed scheme can achieve identification accuracy of more than 90%. To the best of our knowledge, the proposed scheme is the first to estimate the ratios of two mixed protocols in DNS tunnels.

Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models (DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지)

  • Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Youn, Youjeong;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.