• Title/Summary/Keyword: Spatial Information Network

Search Result 1,073, Processing Time 0.034 seconds

Study on Dimensionality Reduction for Sea-level Variations by Using Altimetry Data around the East Asia Coasts

  • Hwang, Do-Hyun;Bak, Suho;Jeong, Min-Ji;Kim, Na-Kyeong;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2021
  • Recently, as data mining and artificial neural network techniques are developed, analyzing large amounts of data is proposed to reduce the dimension of the data. In general, empirical orthogonal function (EOF) used to reduce the dimension in the ocean data and recently, Self-organizing maps (SOM) algorithm have been investigated to apply to the ocean field. In this study, both algorithms used the monthly Sea level anomaly (SLA) data from 1993 to 2018 around the East Asia Coasts. There was dominated by the influence of the Kuroshio Extension and eddy kinetic energy. It was able to find the maximum amount of variance of EOF modes. SOM algorithm summarized the characteristic of spatial distributions and periods in EOF mode 1 and 2. It was useful to find the change of SLA variable through the movement of nodes. Node 1 and 5 appeared in the early 2000s and the early 2010s when the sea level was high. On the other hand, node 2 and 6 appeared in the late 1990s and the late 2000s, when the sea level was relatively low. Therefore, it is considered that the application of the SOM algorithm around the East Asia Coasts is well distinguished. In addition, SOM results processed by SLA data, it is able to apply the other climate data to explain more clearly SLA variation mechanisms.

The Development of a Tour Route Guidance System Using a Traveling Salesman Problem Algorithm (TSP 알고리듬을 이용한 관광노선 안내 시스템 개발)

  • 정영아;구자용
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.275-289
    • /
    • 2003
  • This study focused on offering a helpful information for the touring. To develop a tour route guidance tool, it is needed to use a GIS function, which can suggest a possible shortest path based on time and distance. A Traveling salesman problem algorithm, which was developed to solve multi destination problem in network analysis, was used to implement a tour guidance system. This system was developed using ArcObjects programming components within ArcGIS 8.3. Jeju city was selected for the case study to apply the tool and to test the effectiveness of it. This study demonstrated that this tool was considerably effective for finding a probable optimum tour path in the following aspects. First, it can help tourists to select several attractions from numerous tour sites in an area given limited time. Second, tourist can manage time efficiently by organizing their tour courses on the basis of the tool. Third, tourists can reduce the uncertainties that may happen under unexpected situations in unfamiliar places by obtaining specific spatial information using the tool. Fourth, the Graphic User Interface of the tool can be easily used to obtain visual information of spatial data.

  • PDF

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Research Trend Analysis of Unmanned Aerial Vehicle(UAV) Applications in Agriculture (농업분야 무인항공기(UAV) 활용 연구동향 분석)

  • Bae, Seoung-Hun;Lee, Jungwoo;Kang, Sang Kyu;Kim, Min-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.126-136
    • /
    • 2020
  • Recently, unmanned aerial vehicles (UAV, Drone) are highly regarded for their potential in the agricultural field, and research and development are actively conducted for various purposes. Therefore, in this study, to present a framework for tracking research trends in UAV use in the agricultural field, we secured a keyword search strategy and analyzed social network, a methodology used to analyze recent research trends or technological trends as an analysis model applied. This study consists of three stages. As a first step in data acquisition, search terms and search formulas were developed for experts in accordance with the Keyword Search Strategy. Data collection was conducted based on completed search terms and search expressions. As a second step, frequency analysis was conducted by country, academic field, and journal based on the number of thesis presentations. Finally, social network analysis was performed. The analysis used the open source programming language 'Python'. Thanks to the efficiency and convenience of unmanned aerial vehicles, this field is growing rapidly and China and the United States are leading global research. Korea ranked 18th, and bold investment in this field is needed to advance agriculture. The results of this study's analysis could be used as important information in government policy making.

Trajectory Index Structure based on Signatures for Moving Objects on a Spatial Network (공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조)

  • Kim, Young-Jin;Kim, Young-Chang;Chang, Jae-Woo;Sim, Chun-Bo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.1-18
    • /
    • 2008
  • Because we can usually get many information through analyzing trajectories of moving objects on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. Also, because FNR-tree and MON-tree store the segment unit of moving objects, they can't support the trajectory of whole moving objects. In this paper, we propose an efficient trajectory index structures based on signatures on a spatial network, named SigMO-Tree. For this, we divide moving object data into spatial and temporal attributes, and design an index structure which supports not only range query but trajectory query by preserving the whole trajectory of moving objects. In addition, we divide user queries into trajectory query based on spatio-temporal area and similar-tralectory query, and propose query processing algorithms to support them. The algorithm uses a signature file in order to retrieve candidate trajectories efficiently Finally, we show from our performance analysis that our trajectory index structure outperforms the existing index structures like FNR-Tree and MON-Tree.

  • PDF

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy (공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석)

  • Lee, Yon-Sik;Kim, Young-Ja;Park, Sung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5015-5022
    • /
    • 2010
  • Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.

A Study on the Linkage for National Geographic Information Clearinghouse (국가지리정보유통망과 계열 유통망의 연계에 관한 연구)

  • 신동빈;김수현
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.453-464
    • /
    • 2003
  • The Competitive power of the country in knowledge information can be determined that how efficiently useful knowledge and information can be circulated. Korean government established the second National GIS Master Plan, and constructed National Geographic Information Clearinghouse to the goal 'whole nation's internet circulation of the geographic information and practical use'. But every departments of government are trying to circulate their geographic information individually, And this case, consumer group should approach to several dissemination network in various routing line to get the geographic information. In fact, it is difficult to present the solution for uilified single dissemination network. It is difficult to present suitable linkage plan coinciding in special environment and characteristics of all systems. Consequently, in this study, we suggested linkage element that should consider far link with National Geographic Information Clearinghouse, and presented linkage plan by linkage target type.

  • PDF

Design and Implementation of a Trajectory-based Index Structure for Moving Objects on a Spatial Network (공간 네트워크상의 이동객체를 위한 궤적기반 색인구조의 설계 및 구현)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.

A NOVEL UNSUPERVISED DECONVOLUTION NETWORK:EFFICIENT FOR A SPARSE SOURCE

  • Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.336-338
    • /
    • 1998
  • This paper presents a novel neural network structure to the blind deconvolution task where the input (source) to a system is not available and the source has any type of distribution including sparse distribution. We employ multiple sensors so that spatial information plays a important role. The resulting learning algorithm is linear so that it works for both sub-and super-Gaussian source. Moreover, we can successfully deconvolve the mixture of a sparse source, while most existing algorithms [5] have difficulties in this task. Computer simulations confirm the validity and high performance of the proposed algorithm.

  • PDF