• 제목/요약/키워드: Spatial Error Model

검색결과 436건 처리시간 0.023초

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

Treatment of non-resonant spatial self-shielding effect of double heterogeneous region

  • Tae Young Han;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.749-755
    • /
    • 2023
  • A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the thermal energy range and that of BP compact with BISO. The method was developed based on the effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix layer. The self-shielding factor was derived from the relation between the collision probabilities for a double heterogeneous compact and the effective cross section for the homogenized compact. First, the collision probabilities and transmission probabilities for all layers of the spherical model were calculated using conventional collision probability solver. Then, the effective cross section for the homogenized sphere cell representing the homogenized compact was obtained from the transmission probability calculated using the probability density function of a chord length. The verification calculations revealed that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with various packing fractions and BP compact sizes.

기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원 (Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning)

  • 윤유정;강종구;김근아;박강현;최소연;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.953-966
    • /
    • 2022
  • 에어로솔(aerosol)은 대기 질을 악화시키는 등 인체 건강에 악영향을 끼치므로 에어로솔의 분포 및 특성에 대한 정량적인 관측이 필수적이다. 최근 전 지구 규모에서의 주기적이고 정량적인 정보 획득 수단으로 위성관측 Aerosol Optical Depth (AOD) 영상이 다양한 연구에 활용되지만 광학센서 기반의 위성 AOD 영상은 구름 등의 조건을 가진 일부 지역에서 결측을 가진다. 이에 본 연구는 위성자료의 결측복원을 위하여 격자형 기상자료와 지리적 요소를 입력변수로 하여 Random Forest (RF) 기반 gap-filling 모델을 생성한 이후, gap-free GK-2A/AMI AOD hourly 영상을 산출하였다. 모델의 정확도는 -0.002의 Mean Bias Error (MBE), 0.145의 Root Mean Square Error (RMSE)로, 원자료의 목표 정확도보다 높으며 상관계수 0.714로 복원 대상이 대기변수인 점을 감안하면 상관계수 측면에서도 충분한 설명력을 갖춘 모델이다. 정지궤도 위성의 높은 시간 해상도는 일변화 관측에 적합하며 대기보정을 위한 입력, 지상 미세먼지 농도 추정, 소규모 화재 또는 오염원 분석 등 타 연구를 위한 자료 활용 측면에서 중요하다.

공간데이터 크리깅 적용을 위한 공간상관함수 추정 (Estimation of Spatial Coherency Functions for Kriging of Spatial Data)

  • 배태석
    • 한국측량학회지
    • /
    • 제34권1호
    • /
    • pp.91-98
    • /
    • 2016
  • 지구통계학적인 공간분석의 대표적인 방법인 크리깅(kriging)을 적용하기 위해서는 두 관측점 사이의 거리에 기반한 상관성을 나타내는 공간상관함수의 추정이 우선적으로 이루어져야 한다. 본 연구에서는 다양한 크리깅에 적용할 수 있는 대표적인 상관함수인 semi-variogram, homeogram, covariance function에 대하여 국가지오이드 모델을 기반으로 추정하였다. 경위도 각각 2°의 대상지역 내 통합기준점의 지오이드고를 이용하였으며, 선형모델을 이용하여 공간적인 편향성을 제거하였다. 전체 100개의 샘플 포인트에 대해서 중복되지 않은 두 점 간의 거리를 기준으로 구간을 나누고, 각 함수에 대한 경험적인 값을 계산하였다. 공간상관함수의 경험적인 값은 각각 두 개의 모델에 최소제곱조정 방법으로 피팅한 결과 semi-variogram의 wave 모델 적합도가 가장 높았으며, homeogram과 covariance function은 exponential 모델이 상대적으로 좋은 피팅 결과를 보였다. 본 연구에서 결정한 공간상관함수는 추후 다양한 크리깅 방법을 통해 임의 지점에서의 예측값에 대한 정확도 검증과 이에 대한 평균제곱예측오차(Mean Squared Prediction Error, MSPE)를 계산함으로써 각 함수의 활용성에 대한 추가적인 연구가 수행되어야 한다.

Assessing the Impacts of Errors in Coarse Scale Data on the Performance of Spatial Downscaling: An Experiment with Synthetic Satellite Precipitation Products

  • Kim, Yeseul;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.445-454
    • /
    • 2017
  • The performance of spatial downscaling models depends on the quality of input coarse scale products. Thus, the impact of intrinsic errors contained in coarse scale satellite products on predictive performance should be properly assessed in parallel with the development of advanced downscaling models. Such an assessment is the main objective of this paper. Based on a synthetic satellite precipitation product at a coarse scale generated from rain gauge data, two synthetic precipitation products with different amounts of error were generated and used as inputs for spatial downscaling. Geographically weighted regression, which typically has very high explanatory power, was selected as the trend component estimation model, and area-to-point kriging was applied for residual correction in the spatial downscaling experiment. When errors in the coarse scale product were greater, the trend component estimates were much more susceptible to errors. But residual correction could reduce the impact of the erroneous trend component estimates, which improved the predictive performance. However, residual correction could not improve predictive performance significantly when substantial errors were contained in the input coarse scale data. Therefore, the development of advanced spatial downscaling models should be focused on correction of intrinsic errors in the coarse scale satellite product if a priori error information could be available, rather than on the application of advanced regression models with high explanatory power.

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가 (An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data)

  • 전병운
    • 한국지역지리학회지
    • /
    • 제12권5호
    • /
    • pp.614-630
    • /
    • 2006
  • 자연 및 기술재해에 빠르고 효과적으로 대응하기 위해서는 그 재해지역 내에 있는 인구수를 정확히 추정할 필요가 있다. 그러나 센서스 구역과 재해지역의 공간적 불일치 문제 때문에, 재해지역 내에 있는 인구수를 정확하게 추정할 때에는 구역단위 인구자료를 공간적으로 세분화할 필요가 있다. 본 논문은 센서스 블럭그룹 내의 인구를 개개의 화소로 세분화하기 위한 밀도 구분적 표면모델을 구현하고, 그 표면기반 공간적 세분화 모델의 성능을 통계적 및 가시적으로 평가한다. 표면기반 공간적 세분화 모델은 밀도 구분적 내삽법과 위성영상으르부터 추출된 토지이용 및 피복자료를 사용하며 지리정보시스템에서 구현되었다. 토지이용 및 피복자료는 밀도 구분적 내삽법에서 인구의 지리적 분포에 관한 추가정보를 제공했고, 토지이용 및 피복자료의 퍼센트에 기반을 둔 경험적 표본추출법과 지역가중법은 각 화소에 대한 밀도 구분적 가중치를 객관적으로 결정하기 위해서 사용되었다. 표면기반 공간적 세분화 모델은 애틀란타 대도시권의 밀도 구분적 인구표면을 만드는데 적용되었다. 그 밀도 구분적 인구표변의 정확도는 센서스 수치와의 비교를 통해서 RMSE와 수정 RMSE를 사용하면서 검증되었다. 또한, 각 센서스 트랙과 블럭그룹별 오차들은 퍼센트 오차지도들에 의해서 가시화 되었다. 분석결과에 따르면, 밀도 구분적 인구표면은 인구수의 정확한 추정치를 제시할 뿐만 아니라, 센서스 블록그룹 내의 인구의 상세한 공간분포를 보여 준다. 또한, 인구표면은 대개 교외 및 산림지역 그리고 도심지역에서 인구를 과소평가하거나 과대평가하는 경향이 있다는 것을 밝혀냈다.

  • PDF

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

공간 기준 디지털 도파관 모델의 지연 특성과 합성음의 음질 (Delay Characteristics and Sound Quality of Space Based Digital Waveguide Model)

  • 강명수;김규년
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.680-686
    • /
    • 2003
  • 디지털 도파관 모델은 악기의 물리적 모델링에 사용되는 일반적인 방법이다. 디지털 도파관 모델에서 파동의 움직임은 시간 또는 공간을 기준으로 해석 가능하다. 음의 샘플링이 시간을 기준으로 이루어지므로 악기 모델은 시간에 의한 파동의 움직임으로 묘사되는 것이 일반적이다. 본 논문에서는 현에 대한 공간 기준의 디지털 도파관 모델에 악기 몸체 모델을 추가해 악기 음을 합성하였다. 그렇게 함으로써 합성 음의 음질을 향상시키고 악기 모델의 음색 조절 변수들을 효과적으로 처리할 수 있었다. 공간 기준 샘플링에서 현 및 몸체에서 발생하는 미소 지연 오차에 대해 설명하고 FD (Fractional Delay) 필터를 이용해 미소 지연을 처리하는 방법을 보였다. 그리고 지연에 수에 따른 합성음의 변화를 설명하고 그 결과를 시간 기준 디지털 도파관 모델과 비교하였다.

SG 정보를 이용한 강인한 물체 추출 알고리즘 (Robust Object Detection Algorithm Using Spatial Gradient Information)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.422-428
    • /
    • 2008
  • 본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.