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a b s t r a c t

A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of
double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the
thermal energy range and that of BP compact with BISO. The method was developed based on the
effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix
layer. The self-shielding factor was derived from the relation between the collision probabilities for a
double heterogeneous compact and the effective cross section for the homogenized compact. First, the
collision probabilities and transmission probabilities for all layers of the spherical model were calculated
using conventional collision probability solver. Then, the effective cross section for the homogenized
sphere cell representing the homogenized compact was obtained from the transmission probability
calculated using the probability density function of a chord length. The verification calculations revealed
that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the
double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with
various packing fractions and BP compact sizes.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The fuel of Very High Temperature Reactor (VHTR) contains TRi-
structural ISOtropic (TRISO) particle fuels randomly dispersed in a
graphite matrix. The unique neutronic characteristics of VHTR fuel
is the so-called double heterogeneity (DH), which causes consid-
erable complexity for the neutron transport calculation.

The lattice code developed at Korea Atomic Energy Research
Institute (KAERI), DeCART (Deterministic Core Analysis based on
Ray Tracing) [1] has two options for dealing with the spatial self-
shielding effect of a DH region. One is the Sanchez-Pomraning
method [2,3], with which the method of characteristics (MOC)
can be applied to the explicit DH region of VHTR fuel. However, it
needs self-shielded multi-group cross-section library which is
prepared through resonance treatment procedure using external
codes. The other is the Pin-based pointwise energy Slowing-down
Method for Double Heterogeneity (PSM-DH) [4,5], which was
developed for improving the inaccuracy and system-dependency of
the pre-generated library in the resonance energy range. The
method provides an effective homogenized cross section to reflect
e).

by Elsevier Korea LLC. This is an
DH effect in the resonance energy range and theMOC calculation in
the option is performed on the homogenized compact region.

The Sanchez-Pomraning method can treat the spatial self-
shielding effect for a DH region including resonant and non-
resonant nuclide regardless of energy range and the PSM-DH is,
however, dedicated to handle the self-shielding effect of a DH re-
gion with resonant nuclide in the resonance energy range. Thus,
PSM-DH cannot treat the spatial self-shielding effect of a non-
resonant DH regions such as a VHTR fuel compact in the thermal
energy range and a DH compact composed of non-resonant burn-
able poison (BP). In our previous work on PSM-DH [5], the DH effect
of fuel compact in the thermal energy range was ignored, because
the effect was very small in case of the problems composed of only
fuel compact. However, it was found that the effect is not negligible
in a fuel compact near burnable poison. Furthermore, it is necessary
to properly treat the spatial self-shielding effect of a non-resonant
BP compact with Bi-structural ISOtropic (BISO) particle used in
conventional VHTRs. The spatial self-shielding effect of a BP
compact with BISO containing boron in thermal energy range
cannot be ignored and should also be treated properly.

Therefore, for reflecting the spatial self-shielding effect of non-
resonant DH region while maintaining consistent MOC
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calculation region with the PSM-DH, it is needed to homogenize a
DH compact based on the effective homogenization method.

There are some previous studies [6e8] for the effective ho-
mogenization method. Originally, Shmakov [6] proposed the
effective homogenization method for a particle-dispersed medium
model with only two regions, a matrix layer and a spherical fuel
particle. The method has the assumptions that the thickness of the
matrix is the samewith the diameter of the particle sphere and that
the first collision probability should be preserved in the medium
model. To improve the Shmakov method, Yamamoto [7] proposed
more realistic DH compact model. It was assumed that the model
has three regions, a double-layered particle and a matrix, and that
the thickness of the matrix can be larger than the diameter of the
particle. Afterwards, She [8] proposed an effective homogenization
method based on a transmission model with multi-layered particle
and a matrix. It was assumed that the thickness of the matrix is the
same with the diameter of the particle as in the Shmakov method.
However, these models need complicated derivation of formula for
calculating the collision probability depending on the number of
the particle layers and the geometrical shape of the matrix.

In this work, an easily accessible effective homogenization
method is proposed to treat the spatial self-shielding factor for a
non-resonant DH region such as VHTR fuel compact in the thermal
energy range and a BISO BP compact. The method was developed
based on a spherical unit cell model with explicit coated layers and
a matrix layer, which is consistent MOC calculation region with
PSM-DH for the DH resonance treatment. It also adopted the con-
ventional collision probability solution method which has been
well defined for general spherical cell model. Then, the perfor-
mance of the proposed method is examined using VHTR mini block
problems with burnable poison. The calculation results are pre-
sented in latter part of this paper. It should be noted that this work
focuses the spatial self-shielding effect for non-resonant DH region
and non-resonance energy range. The treatment of the self-
shielding effect of resonant DH region was addressed by the PSM-
DH which was described in detail in our previous work [5].

2. Methods

Commonly, the effective homogenized cross section method for
DH is based on the assumption that first collision probabilities
should be preserved. Starting with the rule, the previous studies
[6e8] established various models with DH and proposed proper
solution methods for them.

In this section, the general definitions and relations for the
effective homogenized cross sectionmethod are presented first and
a spherical unit cell model for the method and its solution method
are described.

2.1. Review of effective homogenized cross section methods for
double heterogeneity

Fig. 1 shows a typical compact unit cell model which consists of
Fig. 1. A compact unit model with a matrix region and a multiple layered particle.
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a matrix region and a multiple layered particle. It is assumed that
the model boundary is conventionally a cylinder [6,8]. The effective
homogenized cross section for the compact model can be derived
by preserving the total reaction rate as follows:

~SfV ¼
X
i

SifiVi; (1)

where i: sub-region index for matrix and particle layers, ~S: effective
homogenized macroscopic total cross section, f: homogenized flux
for a compact, V: volume of a compact, Si: macroscopic total cross
section at sub-region i, fi: flux at sub-region i, Vi: volume of sub-
region i.

Eq. (1) can be rewritten with the self-shielding factor and vol-
ume fraction as follows:

~S¼
X
i

Si
fi

f

Vi

V
¼

X
i

Sifipi; (2)

where fi ¼ fi

f
: self-shielding factor for sub-region i, pi ¼ Vi

V : volume

fraction for sub-region i.
Approaching this model within the framework of first collision

probability, the relation between the transmission probability and
the first collision probability at sub-region is obviously given as:

T þ
X
i

Pi ¼ 1; (3)

where T is transmission probability for a neutron entering through
the model boundary to exit through the same boundary without
suffering any collisions and Pi is first collision probability at sub-
region i for a neutron entering the boundary.

Considering the relation between the collision probability and
the reaction rate, the ratio of the collision probability in a sub-
region and the collision probability in all sub-region should be
equal to the ratio of the effective cross sections in the same regions.
This relation can be expressed as follow:

PiP
i
Pi
¼pi ~Si

~S
¼ pifiSi

~S
; (4)

where ~Si is the effective cross section in the sub-region i.
Inserting Eq. (3) to Eq. (4), the self-shielding factor can be

derived as follow:

fi ¼
S
�

piSi

Pi
1� T

: (5)

If ~S for the compact model and Pi at all sub-regions are known,
the self-shielding factors for all sub-regions can be calculated. Then,
the effective macroscopic cross section at sub-region i can be ob-
tained as follow:

~Sxi ¼ fiSxi; (6)

where ~Sxi: effective macroscopic cross section for type x at sub-
region i, Sxi: macroscopic cross section for type x at sub-region i.
Finally, the effective macroscopic cross section with type x for a
compact can be readily calculated using ~Sxi.

2.2. Spherical compact model with explicit particle layers and its
collision probabilities

When the model boundary is a cylinder as shown in Fig. 1,



Fig. 3. Homogenized spherical compact model.
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obtaining Pi, the collision probabilities for the layers of the particle,
needs considerably complicated formula derivations due to the
different geometry between the cylindrical matrix and the spher-
ical particle.

In order to consider the explicit particle layers without a
mathematical complexity, the spherical unit cell model as shown in
Fig. 2 is adopted in this work. The model is identical to the two-step
homogenization model widely used in the resonance treatment of
DH [5,9]. Also, this model is similar to the that for PSM-DH [4].
However, the unit cell model for the new method just includes
multi-layered particle and the matrix layer whereas that of PSM-
DH includes an additional layer for the moderator region to
reflect the moderation effect in the region. The simplicity of the
model for the new method allows a simple derivation of the solu-
tion method. The radius of the matrix layer in the model can be
easily determined from the particle packing fraction. The collision
probabilities for the multi-layered spherical geometry can be ob-
tained using well-defined solution methods such as Kavenoky
technique [10].

Applying the technique to the spherical model, the collision
probability,Pij, can be readily obtained, which is defined as the
probability that a neutron born in sub-region i has its first collision
at sub-region j. Then, the Pi and T can be obtained using the
following relations [2]:

Pei ¼1�
X
j

Pij; (7)

Pi ¼ lpiSiPei; (8)

T ¼1�
X
i

Pi; (9)

where l is the average chord length through the model boundary
and Pei is the escape probability that a neutron born in sub-region i
crosses the boundary without undergoing any collision.

To evaluate the self-shielding factor using Eq. (5), the effective
homogenized macro total cross-section (~S), the remaining un-
known in the right-hand side of Eq. (5), should be determined. It
should be noted that the transmission probability in the homoge-
nized spherical compact shown in Fig. 3 is determined by the
effective homogenized macro total cross-section and also that the
transmission probability for the homogeneous sphere model is
identical to that for the heterogeneous sphere model according to
the preservation rule of the collision probability.

Assuming that a neutron travels the homogenized sphere with a
chord, l, the transmission probability without any collisions in the
path can be defined as follows:
Fig. 2. Spherical unit cell model with a matrix layer and a multiple layered particle.
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tðlÞ¼ e�~Sl: (10)

In addition, the probability density function for the chord length
in the sphere [11] is defined as:

f ðlÞ¼ l
2R2c

; (11)

where Rc is the radius of the homogenized spherical compact unit
cell as shown in Fig. 3. It can be calculated using the relation, Rc ¼
RT=

ffiffiffiffiffiffi
F3

p
; and RT is the radius of the TRISO particle and F is the

packing fraction of the particles in the compact.
From Eqs. (10) and (11), the transmission probability for the

whole spherical compact can be expressed as:

T ¼
ð2Rc

0

tðlÞf ðlÞdl ¼
ð2Rc

0

e�~Sl l
2R2c

dl: (12)

After integrating Eq. (12), the transmission probability for the
homogenized sphere can be obtained as:

T ¼ 1

2R2c ~S
2

�
1� e�2Rc ~Sð1þ2Rc~SÞ

�
: (13)

However, ~S cannot be expressed as an explicit function of T from
Eq. (13), because the equation includes exponential and polynomial
forms for ~S. Instead, if applying fourth order Taylor expansion for

the exponential function, e�2Rc ~S, the effective cross section can be
approximated as:

S
�
y

1
2Rc

�
1� 5

3
ffiffiffi
3

p bT þ
bT

3
ffiffiffi
9

p
�
; (14)

where bT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27� 54T þ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
92� 243T þ 243T2

p
3

q
For verifying the accuracy of the approximation, Eq. (14), the

reference solution for Eq. (13) was obtained using the Newton-
Raphson method [12] with an error of 1.0 � 10�10. It was
confirmed that the relative differences between the approximation,
Eq. (14), and the reference are less than 0.01% in the three con-
ventional VHTR problems used in section 3. However, the approx-
imation has the limitation originated from the fourth order Taylor
expansion of the exponential function, which has an error of less
than 0.012% for Rc ~S less than 0.2. Direct use of the Newton-Raphson
method instead of the approximation can avoid this limitation in
application.

Therefore, ~S can be calculated using T which is obtained from
Eq. (8).



Fig. 4. Configuration of the MHTGR single fuel pin cell.
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Finally, the self-shielding factor, Eq. (5), can be calculated from
Eqs. (8), (9) and (14).

3. Verification calculations

For evaluating the performance of the proposed method, three
problems were analyzed in this work. Table 1 shows the material
information for the three problems. The first case is a single fuel pin
problem with the TRISO fuel particles which is taken from OECD/
NEA MHTGR-350 benchmark exercise III [13]. Fig. 4 shows the
configuration of the DH fuel pin. This problem was intended to
evaluate the DH effect of the fuel compact in the thermal energy
range. As already described, the DH effect of the resonant nuclides
in the resonance energy rangewas addressed by the PSM-DH and is
beyond the scope of this work. The second case, as shown in Fig. 5,
is a single mini fuel block which consists of the DH fuel pins of the
first case and a BP pin with a homogeneous mixture of 1.6 wt% B4C
and 98.4 wt % graphite. This case was intended to evaluate the DH
effect of the fuel compact near BP in the thermal range. The last case
is a single mini fuel block with the DH fuel pins and a BP pin with
B4C BISO particles. This case was intended to evaluate the DH effect
of the B4C BISO BP compact itself.

All the calculations were performed using DeCART with ENDF/
B-VII.1 cross-section library. In this work, the DH effect for the
resonant nuclides in the resonance energy range was calculated
using the PSM-DH module [4] of DeCART. On the contrary, the self-
shielding factors for the fuel compact in the thermal energy range
and those for the BISO BP compact in entire energy range were
obtained using the effective homogenization method proposed
above.

The additional time for this method is negligible because the
module calculates the self-shielding factors using the total cross
sections for 190 group used in DeCART.

For accuracy comparison, reference self-shielding factors were
obtained using the McCARD code [14] based on the Monte Carlo
method.

3.1. Double heterogeneity effect of TRISO particles in thermal energy
range

This case is for evaluating the DH effect of single fuel pin in
thermal energy range which was ignored due to relatively small
effect in our previous work.

Fig. 6 shows the self-shielding factors of the MHTGR single fuel
Table 1
Material compositions for the MHTGR problems.

Material

TRISO Fuel Particle Kernel

Porous Carbon
IPyC
SiC

OPyC
BISO BP Particle BP Kernel

Porous Carbon
PyC

Compact Matrix
Block Graphite
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pin problem with a packing fraction of 35% at 1100K. Because the
homogenized spherical model represents the homogenized
compact, self-shielding factors for a fuel sub-region in the spherical
model corresponds with those for all fuel sub-region in the
compact. It is observed that the maximum errors of the self-
shielding factor by the effective homogenization method (deno-
ted as Ehom. in Fig. 6) proposed in this work with respect to the
reference result by McCARD are about 1.48% for the fuel layer and
0.19% for the matrix layer at the lowest energy, where the reaction
rate is very small.
Nuclide Number Density (#/barn-cm)

U-235 3.70 � 10�3

U-238 1.99 � 10�2

O-16 3.55 � 10�2

Graphite 1.18 � 10�2

Graphite 5.02 � 10�2

Graphite 9.53 � 10�2

Si-28 4.43 � 10�2

Si-29 2.25 � 10�3

Si-30 1.49 � 10�3

Graphite 4.81 � 10�2

Graphite 9.53 � 10�2

B-10 2.14 � 10�2

B-11 8.63 � 10�2

Graphite 2.76 � 10�2

Graphite 5.02 � 10�2

Graphite 9.38 � 10�2

Graphite 8.27 � 10�2

Graphite 9.28 � 10�2



Fig. 5. Configuration of the mini fuel block with a burnable poison pin at the center.

Fig. 6. Self-shielding factor for fuel and matrix layers in the single fuel pin problem.

Table 2
DH effect of fuel compact with TRISO in thermal energy range.

TRISO Packing
Fraction

Multiplication Factor

McCARD (M)
(s z 14pcm)

DeCART with Hom. a

(H)
DeCART wit
(E)

15% 1.50021 1.50045 1.49968
25% 1.35817 1.35729 1.35690
35% 1.26244 1.26117 1.26093
40% 1.22552 1.22497 1.22477

a vol weighted homogenization for thermal energy range, PSM-DH treatment for reso
b Effective homogenization method for thermal energy range, PSM-DH treatment for

c rDH � rHOMz
1
kH

� 1
kE

Fig. 7. Self-shielding factor for fuel and matrix layers in the mini fuel block with ho-
mogeneous BP.

Fig. 8. Self-shielding factor for BP and matrix layer of the BISO BP compact in the mini
fuel block.
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Table 2 compares the kinf and DH effect of the single fuel pin
problem with various TRISO packing fractions. It reveals that the
DH effect in the thermal range is negligibly small (less than 35
pcm), compared with the DH effect (about 4500 pcm) in the
resonance range [4].

3.2. Double heterogeneity effect of TRISO particles near burnable
poison

The mini fuel block problem with a homogeneous BP pin was
used to evaluate the DH effect of fuel compact near BP pin.

Fig. 7 shows the self-shielding factors in the thermal energy
DH Effect c in Thermal Energy
Range

h Ehom. b Dr(H�M)
(pcm)

Dr(E�M)
(pcm)

11 �24 �34
�48 �69 �21
�80 �95 �15
�37 �50 �13

nance energy range.
resonance energy range.



Table 3
DH effect of TRISO fuel compact facing BP in thermal energy range (BP radius ¼ 0.3 cm).

TRISO Packing Fraction Homogeneous BP Radius ¼ 0.3 cm

Multiplication Factor DH Effect in Thermal Energy Range

McCARD (M) (s z 14pcm) DeCART with Hom. (H) DeCART with Ehom. (E) Dr(H-M) (pcm) Dr(E-M) (pcm)

15% 1.16237 1.17002 1.16087 563 �111 �674
25% 1.25841 1.26243 1.25650 253 �121 �374
35% 1.28098 1.28404 1.27994 186 �63 �249
40% 1.28186 1.28503 1.28156 192 �18 �211

Table 4
DH effect of TRISO fuel compact facing BP in thermal energy range (BP radius ¼ 0.4 cm).

TRISO Packing Fraction Homogeneous BP Radius ¼ 0.4 cm

Multiplication Factor DH Effect in Thermal Energy Range

McCARD (M) (s z 14pcm) DeCART with Hom. (H) DeCART with Ehom. (E) Dr(H-M) (pcm) Dr(E-M) (pcm)

15% 0.96673 0.97510 0.96528 888 �155 �1043
25% 1.10258 1.10795 1.10095 440 �134 �574
35% 1.15557 1.15977 1.15468 313 �67 �380
40% 1.16855 1.17248 1.16809 287 �34 �321

Table 6
DH effect for BISO BP compact with a radius of 0.4 cm

BISO Packing Fraction Double Het. BP Compact Radius ¼ 0.4 cm

Multiplication Factor Double Het. Effect for BP Compact

McCARD (M) (s z 14pcm) DeCART with Ehom. (E) Dr(E-M) (pcm) McCARD (s z 14pcm) (pcm) DeCART with Ehom. (pcm) Error (pcm)

7% 1.10344 1.10234 �110 3626 3599 �26
10% 1.01924 1.01765 �159 3867 3767 �100
12% 0.97609 0.97447 �162 3867 3748 �118
15% 0.92471 0.92288 �183 3818 3622 �196

Table 5
DH effect for BISO BP compact with a radius of 0.3 cm

BISO Packing Fraction Double Het. BP Compact Radius ¼ 0.3 cm

Multiplication Factor Double Het. Effect for BP Compact

McCARD (M) (s z 14pcm) DeCART with Ehom. (E) Dr(E-M) (pcm) McCARD (s z 14pcm) (pcm) DeCART with Ehom. (pcm) Error (pcm)

7% 1.24209 1.24077 �132 2511 2483 �28
10% 1.17180 1.17025 �155 2792 2729 �63
12% 1.13387 1.13232 �155 2875 2790 �84
15% 1.08677 1.08519 �158 2911 2789 �122
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range for the fuel compact facing the BP. The packing fraction of
TRISO fuel was 35%. It shows that the maximum errors are about
1.27% for the fuel layer and 0.47% for the matrix layer and the trend
is similar to the previous single fuel pin problem.

Tables 3 and 4 compare the kinf and DH effect for the fuel block
problems with various TRISO packing fractions and two BP pin radii.
It is observed that the DH effect of the fuel pin in the thermal range
are considerably larger than that in the single fuel pin problem. In
addition, it is noted that the reactivity error in case of simple volume
weighted homogenization for thermal energy region can be over 800
pcm. The difference of the DH effect between fuel compact only and
fuel compact near BP is originated from the difference of the thermal
utilization caused by the self-shielding effect in the thermal range
[15]. Thus, it is clear that the DH effects in thermal range for fuel
block with homogeneous BP must be taken into consideration and
the effective homogenization method proposed in this work can
reduce the reactivity error to a value of under 200 pcm.
754
3.3. Double heterogeneity effect of BISO particles with burnable
poison material

The configuration of the mini fuel block in Fig. 5 was also used in
this calculation to evaluate the DH effect of the BP with BISO par-
ticles. The homogeneous BP pin at the center of the block was
replaced with a BP compact which consists of B4C BISO particles
and a graphite matrix.

Fig. 8 presents the self-shielding factor for the central BP
compact by McCARD and DeCART with the proposed method. The
packing fractions for the TRISO fuel and the BISO BP were 35% and
10%, respectively. It reveals that the maximum errors are about
1.46% for the BP layer and 2.24% for the matrix layer except the
minimum energy point in the range from 1E-3eV to 1Eþ7eV.

Tables 5 and 6 compare the kinf and DH effect for the mini fuel
block problems with various BISO packing fractions and two
compact radii. The DH effect by each code was obtained from the
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two calculations with a DH BP pin and with a homogenized BP pin
by each code.

They show that the DH effects are about 2800 pcm for a radius of
0.3 cm and about 3800 pcm for a radius of 0.4 cm, respectively. In
addition, it is observed that the error of the DeCART result with
respect to the reference McCARD result in the multiplication factor
and DH effect are less than 200 pcm, respectively. The DH effect for
BISO compact is large and positive while the DH effect of fuel
compact is small and negative. For DH BISO compact, compared to
the homogeneous case, the absorption reaction rate is reduced due
to the self-shielding effect, which results in a large positive DH
effect. In contrast, in case of fuel compact, both the capture and
fission reaction rates in thermal energy range are reduced due to
the self-shielding effect, and a small positive DH effect or a small
negative DH effect is possible depending on the reduction of the
two reactions.

4. Conclusions

In this work, for reflecting the DH effect of fuel compact in the
thermal energy range and that of BP compact with BISO, a new
approximation method to evaluate the spatial self-shielding factor
was proposed and verification calculations were performed with
conventional VHTR problems. The method was developed based on
the effective homogenization method and a spherical unit cell
model with explicit coated layers and a matrix layer. It has
consistent MOC calculation region with PSM-DH for the DH reso-
nance treatment.

The self-shielding factor can be derived from the relation be-
tween the collision probabilities for a DH compact and the effective
cross section for the homogenized compact. First, the collision
probabilities and transmission probabilities for all layers of the
spherical unit cell representing a DH compact should be calculated
using conventional collision probability solver. Then, the effective
cross section for the homogenized sphere cell representing the
homogenized compact can be obtained from the transmission
probability which can be calculated by using the probability density
function of a chord length.

The verification calculations revealed that the proposed method
gives the self-shielding factor with a maximum error of 2.3% and
the DH effect with amaximum error of 200 pcm for various packing
fractions and BP compact sizes.

This method was successfully implemented into DeCART for the
lattice calculation in VHTR problems. Thus, it is expected that the
method can be used for the treatment of non-resonant spatial self-
shielding effect of DH region of various type VHTRs in company
755
with PSM-DH for the treatment of resonance shelf-shielding effect
of DH region. In the future, this method will be improved so that it
can be applied tomultiple grain types such as compacts withmixed
TRISO and BISO particles.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020M2D4A2067322).

References

[1] J.Y. Cho, T.Y. Han, H.J. Park, S.G. Hong, H.C. Lee, Improvement and verification
of the DeCART code for HTGR core physics analysis, Nucl. Eng. Technol. 51
(2019) 13e30.

[2] R. Sanchez, G. Pomraning, A statistical analysis of the double heterogeneity
problem, Ann. Nucl. Energy 18 (1991) 371e395.

[3] R. Sanchez, E. Masiello, Treatment of the Double Heterogeneity with the
Method of Characteristics, Proc. PHYSOR2002, Seoul, Korea, 2002. Oct. 7-10.

[4] S.Y. Choi, D.J. Lee, Resonance treatment using pin-based pointwise energy
slowing-down method, J. Comput. Phys. 330 (2017) 134e155.

[5] T.Y. Han, J.Y. Cho, C.K. Jo, H.C. Lee, Extension of pin-based point-wise energy
slowing-down method for VHTR Fuel with double heterogeneity, Energies 14
(2021) 2179.

[6] V.M. Shmakov, Effective Cross Sections for Calculations of Criticality of
Dispersed Media, Proc. PHYSOR2000, Pittsburgh, PA, USA, 2000. May 7e11.

[7] T. Yamamoto, Extension of effective cross section calculation method for
neutron transport calculations in particle-dispersed media, J. Nucl. Sci. Tech-
nol. 43 (2006) 77e87.

[8] D. She, An equivalent homogenization method for treating the stochastic
media, Nucl. Sci. Eng. 185 (2017) 351e360.

[9] M.L. Williams, Resonance self-shielding methodologies in SCALE 6, Nucl.
Technol. 174 (2011) 149e168.

[10] G. Marleau, DRAGON theory manual, Part 1: collision probability calculations,
in: Tech. Rep. IGE-236 Revision 1, Department de genie mecanique, Ecole
Polytechnique de Montreal, 2001.

[11] K.M. Case, Introduction to the theory of neutron diffusion, Los Alamos (1953)
21.

[12] A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions, So-
ciety for Industrial and Applied Mathematics. SIAM., 2007.

[13] J. Ortensi, Prismatic Coupled Neutronics/Thermal Fluids Transient Benchmark
of the MHTGR-350 MW Core Design: Benchmark Definition, OECD Nuclear
Energy Agency, 2013. NEA/NSC/DOC(2013).

[14] H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD, Monte Carlo code for
advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2012) 161e176.

[15] Y.H. Kim, Elimination of double-heterogeneity through a reactivity-equivalent
physical transformation, Proc. GLOBAL Oct. 9e13 (2005). Tsukuba, Japan.

http://refhub.elsevier.com/S1738-5733(22)00461-2/sref1
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref1
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref1
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref1
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref2
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref2
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref2
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref3
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref3
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref4
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref4
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref4
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref5
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref5
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref5
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref6
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref6
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref6
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref7
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref7
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref7
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref7
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref8
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref8
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref8
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref9
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref9
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref9
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref10
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref10
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref10
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref11
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref11
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref12
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref12
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref13
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref13
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref13
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref14
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref14
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref14
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref15
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref15
http://refhub.elsevier.com/S1738-5733(22)00461-2/sref15

