Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.5.3.12

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning  

Youn, Youjeong (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kang, Jonggu (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Geunah (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Park, Ganghyun (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Choi, Soyeon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Yangwon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.5_3, 2022 , pp. 953-966 More about this Journal
Abstract
Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.
Keywords
Aerosol optical depth (AOD); GK-2A; Gap-filling; Random forest;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kaufman, Y.J., A. Wald, L.A. Remer, B.C. Gao, R.R. Li, and L. Flynn, 1997. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol, IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298. https://doi.org/10.1109/36.628795   DOI
2 Kaufman, Y.J., I. Koren, L.A. Remer, D. Rosenfeld, and Y. Rudich, 2005. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, Proceedings of the National Academy of Sciences, 102(32): 11207-11212. https://doi.org/10.1073/pnas.0505191102   DOI
3 Kianian, B., Y. Liu, and H.H. Chang, 2021. Imputing satellite-derived aerosol optical depth using a multi-resolution spatial model and random forest for PM2.5 prediction, Remote Sensing, 13(1):126. https://doi.org/10.3390/rs13010126   DOI
4 Kim, S.M., J. Yoon, K.J. Moon, D.R. Kim, J.H. Koo, M. Choi, K. Kim, and Y.G. Lee, 2018. Empirical estimation and diurnal patterns of surface PM2.5 concentration in Seoul using GOCI AOD, Korean Journal of Remote Sensing, 34(3): 451-463 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2018.34.3.2   DOI
5 Kim, S., Y. Jeong, Y. Youn, S. Cho, J. Kang, G. Kim, and Y. Lee, 2021. A comparison between multiple satellite AOD products using AERONET sun photometer observations in South Korea: Case study of MODIS, VIIRS, Himawari-8, and Sentinel-3, Korean Journal of Remote Sensing, 37(3): 543-557 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2021.37.3.14   DOI
6 Park, J., J. Kim, G. Lee, and J. E. Yang, 2017. Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea, Journal of Soil and Groundwater Environment, 22(6): 120-128 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2017.22.6.120   DOI
7 KMA (Korea Meteorological Administration), 2020. Guide to Utilization of Numerical Prediction Model Data, https://data.kma.go.kr/community/board/selectBoardList.do?bbrdTypeNo=4&pgmNo=92, Accessed on Feb. 2, 2022.
8 Lau, K.M., M.K. Kim, and K.M. Kim, 2006. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Climate Dynamics, 26(7-8): 855-864. https://doi.org/10.1007/s00382-006-0114-z   DOI
9 NMSC (National Meteorological Satellite Center), 2019. GK-2A AMI Algorithm Theoretical Basis Document, https://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a, Accessed on Jan. 10, 2022.
10 Park, S.Y., H.J. Lee, J.E. Kang, T. Lee, and C.H. Kim, 2018. Aerosol radiative effects on mesoscale cloudprecipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign, Atmospheric Environment, 172: 109-123. https://doi.org/10.1016/j.atmosenv.2017.10.044   DOI
11 Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, Q. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevag, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, 2006. An AeroCom initial assessment - optical properties in aerosol component modules of global models, Atmospheric Chemistry and Physics, 6(7): 1815-1834. https://doi.org/10.5194/acp-6-1815-2006
12 Fan, Z., Q. Zhan, C. Yang, H. Liu, and M. Bilal, 2020. Estimating PM2.5 concentrations using spatially local XGBoost based on full-covered SARA AOD at the urban scale, Remote Sensing, 12(20): 3368. https://doi.org/10.3390/rs12203368   DOI
13 Aires, F., C. Prigent, and W. B. Rossow, 2004. Temporal interpolation of global surface skin temperature diurnal cycle overland under clear and cloudy conditions, Journal of Geophysical Research: Atmospheres, 109: D04313. https://dx.doi.org/10.1029/2003JD003527   DOI
14 Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumaida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016. An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites, Journal of the Meteorological Society of Japan. Ser. II, 94(2): 151-183. https://doi.org/10.2151/jmsj.2016-009   DOI
15 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324   DOI
16 Bucholtz, A., 1995. Rayleigh-scattering calculations for the terrestrial atmosphere, Applied Optics, 34(15): 2765-2773. https://doi.org/10.1364/AO.34.002765   DOI
17 Chen, J.M., F. Deng, and M. Chen, 2006. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter, IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2230-2238. https://doi.org/10.1109/TGRS.2006.872089   DOI
18 Gao, L., J. Li, L. Chen, L. Zhang, and A. K Heidinger, 2016. Retrieval and validation of atmospheric aerosol optical depth from AVHRR over China, IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6280-6291. https://doi.org/10.1109/TGRS.2016.2574756   DOI
19 Chen, B., S. You, Y. Ye, Y. Fu, Z. Ye, J. Deng, K. Wang, and Y. Hong, 2021. An interpretable selfadaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China, Science of The Total Environment, 768: 144724. https://doi.org/10.1016/j.scitotenv.2020.144724   DOI
20 Jee, J.B., K.T. Lee, K.H. Lee, and I.S. Zo, 2020. Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI data, Asia-Pacific Journal of Atmospheric Sciences, 56(2): 207-223. https://doi.org/10.1007/s13143-019-00156-3   DOI
21 Zhang, Y., M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, 2012. Real-time air quality forecasting, part I: History, techniques, and current status, Atmospheric Environment, 60: 632-655. https://doi.org/10.1016/j.atmosenv.2012.06.031   DOI
22 Russell, P.B., J.M. Livingston, E.G. Dutton, R.F. Pueschel, J.A. Reagan, T.E. DeFoor, M.A. Box, D. Allen, P. Pilewskie, B.M. Herman, S.A. Kinne, and D.J. Hofmann, 1993. Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data, Journal of Geophysical Research: Atmospheres, 98(D12): 22969-22985. https://doi.org/10.1029/93JD02308   DOI
23 Singh, M.K., R. Gautam, and P. Venkatachalam, 2017. Bayesian merging of MISR and MODIS aerosol optical depth products using error distributions from AERONET, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12): 5186-5200. https://doi.org/10.1109/JSTARS.2017.2734331   DOI
24 Yu, C., L. Chen, L. Su, M. Fan, and S. Li, 2011. Kriging interpolation method and its application in retrieval of MODIS aerosol optical depth, Proc. of 2011 19th International Conference on Geoinformatics, Shanghai, China, Jun. 24-26, pp. 1-6. https://doi.org/10.1109/GeoInformatics.2011.5981052   DOI
25 Zhao, C., Z. Liu, Q. Wang, J. Ban, N.X. Chen, and T. Li, 2019. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region, Atmospheric Environment, 203: 70-78. https://doi.org/10.1016/j.atmosenv.2019.01.045   DOI
26 Grell, G.A. and A. Baklanov, 2011. Integrated modeling for forecasting weather and air quality: a call for fully coupled approaches, Atmospheric Environment, 45(38): 6845-6851. https://doi.org/10.1016/j.atmosenv.2011.01.017   DOI
27 Gao, L., L. Chen, J. Li, A. K. Heidinger, X. Xu, and S. Qin, 2018. A long-term historical aerosol optical depth data record (1982-2011) over China from AVHRR, IEEE Transactions on Geoscience and Remote Sensing, 57(5): 2467-2480. https://doi.org/10.1109/TGRS.2018.2873944   DOI
28 Gao, L., L. Chen, C. Li, J. Li, H. Che, and Y. Zhang, 2021. Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China, Atmospheric Research, 248: 105248. https://doi.org/10.1016/j.atmosres.2020.105248   DOI
29 Geogdzhayev, I.V., M.I. Mishchenko, W.B. Rossow, B. Cairns, A.A Lacis, 2002. Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data, Journal of the Atmospheric Sciences, 59(3): 262-278. https://doi.org/10.1175/1520-0469(2002)059%3C0262:GTCARO%3E2.0.CO;2   DOI
30 Hoff, R., H. Zhang, N. Jordan, A. Prados, J. Engel-Cox, A. Huff, S. Weber, E. Zell, S. Kondragunta, J. Szykman, B. Johns, F. Dimmick, A. Wimmers, J. Al-Saadi, and C. Kittaka, 2009. Applications of the three-dimensional air quality system to western US air quality: IDEA, Smog Blog, Smog Stories, AirQuest, and the Remote Sensing Information Gateway, Journal of the Air & Waste Management Association, 59(8): 980-989. https://doi.org/10.3155/1047-3289.59.8.980   DOI
31 Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, Bulletin of the American Meteorological Society, 79(10): 2101-2114. https://doi.org/10.1175/1520-0477(1998)079%3C2101:SARATS%3E2.0.CO;2   DOI
32 Huang, J., S. Kondragunta, I. Laszlo, H. Liu, L.A. Remer, H. Zhang, S. Superczynski, P. Ciren, B.N. Holben, and M. Petrenko, 2016. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Angstrom exponent with AERONET, Journal of Geophysical Research: Atmospheres, 121(12): 7139-7160. https://doi.org/10.1002/2016JD024834   DOI
33 Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, Journal of Geophysical Research: Atmospheres, 108(D23). https://doi.org/10.1029/2003JD003550   DOI
34 Jackson, J.M., H. Liu, I. Laszlo, S. Kondragunta, L.A. Remer, J. Huang, and H.C. Huang, 2013. SuomiNPP VIIRS aerosol algorithms and data products, Journal of Geophysical Research: Atmospheres, 118(22): 12673-12689. https://doi.org/10.1002/2013JD020449   DOI
35 Ramanathan, V.C.P.J., P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld, 2001. Aerosols, climate, and the hydrological cycle, Science, 294(5549): 2119-2124. https://doi.org/10.1126/science.1064034   DOI
36 Remer, L.A., Y.J. Kaufman, D. Tanre, S. Mattoo, D.A. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R. Levy, R. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben, 2005. The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4): 947-973. https://doi.org/10.1175/JAS3385.1   DOI