• Title/Summary/Keyword: Spatial Channel Model

Search Result 175, Processing Time 0.027 seconds

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

On the Yellow Sand Detection using KOMPSAT OSMI Data (KOMPSAT OSMI 자료를 이용한 황사탐지)

  • 김영섭;박경원;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • Radiative transfer model was used to detect the yellow sand using KOMPSAT-1/0SMI data. With OSMI and SeaWiFS data, spectrum analysis for spatial and channel were carried out to investigate the characteristics of sensor for the detection of yellow sand. It was compared and analyzed the optical depth of OSMI and SeaWiFS data. Spectral characteristics of x-axis is similar in 765 and 865nm according to spectral analysis for OSMI and SeaWiFS data. It is considered that band 7 and 8(765 and 865nm) of OSMI is suitable for detecting the yellow sand. Compared the yellow sand images by OSMI and MODIS, the data of OSMI are applicable to monitor the yellow sand phenomena. The optical depth of yellow sand event was about 0.8 with 1.0 maximum.

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • Ildiko Harsanyi;Andras Horvath;Zoltan Kis;Katalin Gmeling;Daria Jozwiak-Niedzwiedzka;Michal A. Glinicki;Laszlo Szentmiklosi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1036-1044
    • /
    • 2023
  • The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.

Classification and Forming Processes of Low Relief Landforms in the Korean Peninsula (한반도 평탄지의 유형분류와 형성과정)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.1
    • /
    • pp.31-55
    • /
    • 2009
  • This research aims 1) to characterize the spatial distribution of low relief landforms (plains) via analyses of a Digital Elevation Model (DEM), 2) to classify plains according to morphological and genetic similarity, and 3) to develop a model to explain forming processes of plains in the Korean peninsula. Plains can easily be separated from high relief mountaneous areas by analyzing the DEM. The overall morphological and locational characteristics of plains can be categorized into lava plains, fluvial-marine plains, erosional plains, intermontane basins, and higher ground plains. It is concluded that the characteristic of each plain type is decided by base-level changes caused by tectonic uplift and sea-level changes, and topological relationship of different rock types. Different plain types do not exist independently, but connected with each others along stream networks. The model developed is able to combine the morphological characteristics of plains with the channel network to conceptualize characteristics and development pathways of plains in the Korean Peninsula.

Evaluation of Soil Erosion in Small Mountainous Watersheds Using SWAT Model: A Case Study of the Woldong Catchment, Anseong (SWAT을 이용한 최상류 소유역 토양침식 평가: 안성 월동저수지 유역을 대상으로)

  • Lim, Young Shin;Byun, Jongmin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • Successful sediment management at the watershed scale requires an understanding of the erosion, transport and sedimentation processes at the specific site scale. However, studies on the sediment runoff characteristics in a small uppermost watershed, which serves as a sediment supply function, are very rare. Therefore, this study attempted to investigate the fluctuations in major sediment supply areas and sediment runoff in the uppermost mountain small watershed, and for this purpose, ArcSWAT (Soil and Water Assessment Tools with GIS interface) was applied to the Woldong reservoir catchment located in Gosam-myeon, Anseong-si, Gyeonggi-do. The model results were manually calibrated using the monitoring data of the Woldong reservoir sedimentation rate from 2005 to 2007. It was estimated that annual average of 34.4 tons/year of sediment was discharged from the Woldong reservoir basin. This estimate almost coincided with the monitoring data of the Woldong reservoir during the low flow period but tended to be somewhat underestimated during the high flow period. Although the SWAT model does not fully reflect the erosion process of gully and in-channel, this underestimation is probably due to the spatial connectivity of sediment transport and the storage and reactivation of the sediment being transported. Most of the forested hillslopes with a well-developed organic horizon were evaluated as having a low risk of erosion, while the places with the highest risk of erosion were predicted to be distributed in the logged area with some weeds or shrubs (classified as pasture) with relatively steeper slopes, and in the bare land. The results of this study are expected to be useful in developing strategies for sediment control and reservoir management.

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Assessments of Nitrate Budget by Currents and Biogeochemical Process in the Korea Strait based on a 3D Physical-Biogeochemical Coupled Model (3차원 물리-생지화학 결합 모델을 이용한 대한해협 주변의 해류와 생지화학적 요인에 의한 질산염 유출입 평가)

  • TAK, YONG JIN;CHO, YANG KI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Nitrate (NO3-) plays an important role in aquaculture and ecosystems in the Korea Strait. Observational data propose that ocean currents are crucial to NO3- budget in the Korea Strait. However, assessment of budget by currents and biogeochemical processes has not yet been investigated. This study examines seasonal and spatial variations in NO3- budget by currents and biological processes in the Korea Strait from 2011 to 2019 using a physical-biogeochemical coupled model. Model results suggest that current-driven net supply of NO3- is consumed by uptake of phytoplankton in the Korea Strait. Advective influx is driven by the Tsushima warm current and the influx by the Jeju warm current is approximately one third of it. All of the influxes are transported out to the East Sea through the Korea Strait, of which two third passes through the western channel and the rest through the eastern channel. Annual mean NO3- net transport show that currents supply NO3- year round except for January, but the budget by biogeochemical processes consumes it every season except for winter.

Variation in Residence Time and Water Exchange Rate by Release Time of Pollutants Over a Tidal Cycle in Masan Bay (조석 주기별 오염물질 방출에 따른 마산만의 체류시간 및 해수교환율 변화)

  • Park, Sung-Eun;Lee, Won-Chan;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Jin-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.249-256
    • /
    • 2011
  • Lagrangian particle transport model coupled with the EFDC have been performed to estimate the residence time and water exchange rate by release time of pollutants over a tidal cycle in Masan Bay. The modelled residence time for the whole bay was about 40 days, ranging from less than 20 days in the southern parts of Budo, to over 100 days in the upper parts of Somodo. The spatial difference of residence time was controlled by tidal residual currents and the distance to the bay channel. The area mean residence time during spring and neap tides was estimated to be about 36 days and 42 days, respectively. The time required for 30% exchange of water was calculated as ranging from 65 to 105 days by release time of pollutants.