• Title/Summary/Keyword: Sparsity Technique

Search Result 59, Processing Time 0.029 seconds

A Study on Measurement Selection Algorithm for Power System State Estimation Under the Consideration of Dummy Buses (DUMMY모선을 고려한 상태추정 측정점선정 알고리즘에 관한 연구)

  • 문영현;이태식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.107-117
    • /
    • 1992
  • This paper presents an improved algorithm of optimal measurement design with a reliability evaluation method for a large power system. The proposed algorithm is developed to consider the dummy bus and to achieve highest accuracy of the state estimator as well with the limited investment cost. The dummy bus in the power system is impossible to install measurement meter, while real and reactive power measurements is considered in the proposed algorithm. On the other hand, P/C model is developed by taking advantage of the matrix sparsity. The improved program is successfully tested for KEPCO system with PSS/E lineflow calculated data package.

  • PDF

Recommendation System using 2-Way Hybrid Collaborative Filtering in E-Business (전자상거래에서 2-Way 혼합 협력적 필터링을 이용한 추천 시스템)

  • 김용집;정경용;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.175-178
    • /
    • 2003
  • Two defects have been pointed out in existing user-based collaborative filtering such as sparsity and scalability, and the research has been also made progress, which tries to improve these defects using item-based collaborative filtering. Actually there were many results, but the problem of sparsity still remains because of being based on an explicit data. In addition, the issue has been pointed out. which attributes of item arenot reflected in the recommendation. This paper suggests a recommendation method using nave Bayesian algorithm in hybrid user and item-based collaborative filtering to improve above-mentioned defects of existing item-based collaborative filtering. This method generates a similarity table for each user and item, then it improves the accuracy of prediction and recommendation item using naive Bayesianalgorithm. It was compared and evaluated with existing item-based collaborative filtering technique to estimate the accuracy.

  • PDF

WV-BTM: A Technique on Improving Accuracy of Topic Model for Short Texts in SNS (WV-BTM: SNS 단문의 주제 분석을 위한 토픽 모델 정확도 개선 기법)

  • Song, Ae-Rin;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • As the amount of users and data of NS explosively increased, research based on SNS Big data became active. In social mining, Latent Dirichlet Allocation(LDA), which is a typical topic model technique, is used to identify the similarity of each text from non-classified large-volume SNS text big data and to extract trends therefrom. However, LDA has the limitation that it is difficult to deduce a high-level topic due to the semantic sparsity of non-frequent word occurrence in the short sentence data. The BTM study improved the limitations of this LDA through a combination of two words. However, BTM also has a limitation that it is impossible to calculate the weight considering the relation with each subject because it is influenced more by the high frequency word among the combined words. In this paper, we propose a technique to improve the accuracy of existing BTM by reflecting semantic relation between words.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

On dence column splitting in interial point methods of linear programming (내부점 선형계획법의 밀집열 분할에 대하여)

  • 설동렬;박순달;정호원
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • The computational speed of interior point method of linear programming depends on the speed of Cholesky factorization. If the coefficient matrix A has dense columns then the matrix A.THETA. $A^{T}$ becomes a dense matrix. This causes Cholesky factorization to be slow. We study an efficient implementation method of the dense column splitting among dense column resolving technique and analyze the relation between dense column splitting and order methods to improve the sparsity of Cholesky factoror.

  • PDF

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.

APMDI-CF: An Effective and Efficient Recommendation Algorithm for Online Users

  • Ya-Jun Leng;Zhi Wang;Dan Peng;Huan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3050-3063
    • /
    • 2023
  • Recommendation systems provide personalized products or services to online users by mining their past preferences. Collaborative filtering is a popular recommendation technique because it is easy to implement. However, with the rapid growth of the number of users in recommendation systems, collaborative filtering suffers from serious scalability and sparsity problems. To address these problems, a novel collaborative filtering recommendation algorithm is proposed. The proposed algorithm partitions the users using affinity propagation clustering, and searches for k nearest neighbors in the partition where active user belongs, which can reduce the range of searching and improve real-time performance. When predicting the ratings of active user's unrated items, mean deviation method is used to impute values for neighbors' missing ratings, thus the sparsity can be decreased and the recommendation quality can be ensured. Experiments based on two different datasets show that the proposed algorithm is excellent both in terms of real-time performance and recommendation quality.

Design of QAPM Modulation for Low Power Short Range Communication and Application of Compressive Sensing (저전력 근거리 통신을 위한 QAPM 변조의 설계와 압축 센싱의 적용)

  • Kim, So-Ra;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • In this paper, we propose a QAPM(Quadrature Amplitude Position Modulation) modulation using compressive sensing for the purpose of power efficiency improvement. QAPM modulation is a combination technique of QAM (quadrature amplitude modulation) and PPM(Pulse Position Modulation). Therefore it can decrease the transmission power and improve BER performance. Moreover, even if the band width is widened when the number of positions is increased, high sparsity characteristic caused by position number can be applied to compressive sensing technique. Compressive sensing has recently studied as a method that can be successfully reconstructed from the small number of measurements for sparse signal. Therefore, the proposed system can lower price of receiver by reducing sampling rate and has performance improved by using QAPM modulation. And the results are confirmed through simulations.

An Accelerated Iterative Method for the Dynamic Analysis of Multibody Systems (반복 계산법 및 계산 가속기법에 의한 다물체 동역학 해법)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.899-909
    • /
    • 1992
  • An iterative solution technique is presented to analyze the dynamic systems of rigid bodies subjected to kinematic constraints. Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Constraints on the velocity and acceleration as well as the position are made to be satisfied at joints at each time step. Time integration is efficiently performed because decomposition or orthonormalization of the large matrix is not required at all. An acceleration technique is suggested for the faster convergence of the iterative scheme.