• 제목/요약/키워드: Sparsity

검색결과 335건 처리시간 0.032초

전력산업 구조개편 환경 하에서 무효전력 보조서비스 운용을 위한 최적조류계산법 개발 (Development of Optimal Power Flow for the Ancillary Service of Reactive Power Generation under Restructuring Environment)

  • 이승렬;이병준;송태용;정민화;문영환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권1호
    • /
    • pp.37-44
    • /
    • 2002
  • This Paper suggests reasonable pricing mathod fur Reactive Power in Optimal Power Flow for the system analysis. Under restructuring, not only real power pricing but also reactive power pricing is important for the system analysis and operation. If people just focus on real power pricing, the Generators may no generate reactive power voluntarily, because the Generators may not recover the cost of the reactive power generation. So making a reasonable reactive power pricing is becoming more important than any other time. In this paper, the authors set a Proper Power factor and price the portion of the reactive power that exceeds the power factor using Interior Point Method. By applying this method, the System operator can use this strategy for the analysis of reactive power generation pricing and the Generator can get the motivation to generate reactive power. The author develops fully optimized fast Primal Dual Interior Point Method with sparsity technique and applies this method to Reliability Test System (RTS24) and KEPCO 674 bus system (684 buses. 1279 lines). It shows adaptability and usefulness.

Classifying Instantaneous Cognitive States from fMRI using Discriminant based Feature Selection and Adaboost

  • Vu, Tien Duong;Yang, Hyung-Jeong;Do, Luu Ngoc;Thieu, Thao Nguyen
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2016
  • In recent decades, the study of human brain function has dramatically increased thanks to the advent of Functional Magnetic Resonance Imaging. This is a powerful tool which provides a deep view of the activities of the brain. From fMRI data, the neuroscientists analyze which parts of the brain have responsibility for a particular action and finding the common pattern representing each state involved in these tasks. This is one of the most challenges in neuroscience area because of noisy, sparsity of data as well as the differences of anatomical brain structure of each person. In this paper, we propose the use of appropriate discriminant methods, such as Fisher Discriminant Ratio and hypothesis testing, together with strong boosting ability of Adaboost classifier. We prove that discriminant methods are effective in classifying cognitive states. The experiment results show significant better accuracy than previous works. We also show that it is possible to train a successful classifier without prior anatomical knowledge and use only a small number of features.

전자상거래 개인화 추천을 위한 상품 카테고리 중립적 사용자 프로파일링 (Cross-Product Category User Profiling for E-Commerce Personalized Recommendation)

  • 박수환;이홍주;조남재;김종우
    • Asia pacific journal of information systems
    • /
    • 제16권3호
    • /
    • pp.159-176
    • /
    • 2006
  • Collaborative filtering is one of the popular techniques for personalized recommendation in e-commerce. In collaborative filtering, user profiles are usually managed per product category in order to reduce data sparsity. Product diversification of Internet storefronts and multiple product category sales of e-commerce portals require cross-product category usage of user profiles in order to overcome the cold start problem of collaborative filtering. In this paper, we study the feasibility of cross-product category usage of user profiles, and suggest a method to improve recommendation performance of cross-product category user profiling. First, we investigate whether user profiles on a product category can be used to recommend products in other product categories. Furthermore, a way of utilizing user profiles selectively is suggested to increase recommendation performance of cross-product category user profiling. The feasibility of cross-product category user profiling and the usefulness of the proposed method are tested with real click stream data of an Internet storefront which sells multiple product categories including books, music CDs, and DVDs. The experiment results show that user profiles on a product category can be used to recommend products in other product categories. Also, the selective usage of user profiles based on correlations between subcategories of two product categories provides better performance than the whole usage of user profiles.

Study on Tag, Trust and Probability Matrix Factorization Based Social Network Recommendation

  • Liu, Zhigang;Zhong, Haidong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2082-2102
    • /
    • 2018
  • In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.

성근 바인 코풀라 모형을 이용한 고차원 금융 자료의 VaR 추정 (Value at Risk calculation using sparse vine copula models)

  • 안광준;백창룡
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.875-887
    • /
    • 2021
  • 최대예상손실액(VaR)은 위험관리수단으로 금융에서 시장위험을 측정하는 대표적인 값이다. 본 논문에서는 다양한 자산으로 이루어진 고차원 금융자료에서 자산들 간의 의존성 구조를 잘 설명할 수 있는 성근 바인 코풀라를 이용한 VaR 추정에 대해서 논의한다. 성근 바인 코풀라는 정규 바인 코풀라 모형에 벌점화를 적용한 방법으로 추정하는 모수의 개수를 벌점화를 통해 축소하는 방법이다. 모의 실험 결과 성근 바인 코풀라를 이용한 VaR 추정이 더 작은 표본 외 예측오차를 줌을 살펴볼수 있었다. 또한 최근 5년간의 코스피 60개 종목을 바탕으로 실시한 실증 자료 분석에서도 성근 바인 코풀라 모형이 더 좋은 예측 성능을 보임을 확인할 수 있었다.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Hot Topic Discovery across Social Networks Based on Improved LDA Model

  • Liu, Chang;Hu, RuiLin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3935-3949
    • /
    • 2021
  • With the rapid development of Internet and big data technology, various online social network platforms have been established, producing massive information every day. Hot topic discovery aims to dig out meaningful content that users commonly concern about from the massive information on the Internet. Most of the existing hot topic discovery methods focus on a single network data source, and can hardly grasp hot spots as a whole, nor meet the challenges of text sparsity and topic hotness evaluation in cross-network scenarios. This paper proposes a novel hot topic discovery method across social network based on an im-proved LDA model, which first integrates the text information from multiple social network platforms into a unified data set, then obtains the potential topic distribution in the text through the improved LDA model. Finally, it adopts a heat evaluation method based on the word frequency of topic label words to take the latent topic with the highest heat value as a hot topic. This paper obtains data from the online social networks and constructs a cross-network topic discovery data set. The experimental results demonstrate the superiority of the proposed method compared to baseline methods.

An Efficient Model Based on Smoothed ℓ0 Norm for Sparse Signal Reconstruction

  • Li, Yangyang;Sun, Guiling;Li, Zhouzhou;Geng, Tianyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2028-2041
    • /
    • 2019
  • Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical applications, the transform coefficients of many signals usually have weak sparsity and suffer from a variety of noise disturbances. What's worse, most existing classical algorithms are not able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed ${\ell}_0$ norm for sparse signal reconstruction. The direct ${\ell}_0$ norm problem is NP hard, but it is unrealistic to directly solve the ${\ell}_0$ norm problem for the reconstruction of the sparse signal. To select a suitable sequence of smoothed function and solve the ${\ell}_0$ norm optimization problem effectively, we come up with a generalized approximate function model as the objective function to calculate the original signal. The proposed model preserves sharper edges, which is better than any other existing norm based algorithm. As a result, following this model, extensive simulations show that the proposed algorithm is superior to the similar algorithms used for solving the same problem.

PCRM: Increasing POI Recommendation Accuracy in Location-Based Social Networks

  • Liu, Lianggui;Li, Wei;Wang, Lingmin;Jia, Huiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5344-5356
    • /
    • 2018
  • Nowadays with the help of Location-Based Social Networks (LBSNs), users of Point-of-Interest (POI) recommendation service in LBSNs are able to publish their geo-tagged information and physical locations in the form of sign-ups and share their experiences with friends on POI, which can help users to explore new areas and discover new points-of-interest, and promote advertisers to push mobile ads to target users. POI recommendation service in LBSNs is attracting more and more attention from all over the world. Due to the sparsity of users' activity history data set and the aggregation characteristics of sign-in area, conventional recommendation algorithms usually suffer from low accuracy. To address this problem, this paper proposes a new recommendation algorithm based on a novel Preference-Content-Region Model (PCRM). In this new algorithm, three kinds of information, that is, user's preferences, content of the Point-of-Interest and region of the user's activity are considered, helping users obtain ideal recommendation service everywhere. We demonstrate that our algorithm is more effective than existing algorithms through extensive experiments based on an open Eventbrite data set.

An Adaptive Iterative Algorithm for Motion Deblurring Based on Salient Intensity Prior

  • Yu, Hancheng;Wang, Wenkai;Fan, Wenshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.855-870
    • /
    • 2019
  • In this paper, an adaptive iterative algorithm is proposed for motion deblurring by using the salient intensity prior. Based on the observation that the salient intensity of the clear image is sparse, and the salient intensity of the blurred image is less sparse during the image blurring process. The salient intensity prior is proposed to enforce the sparsity of the distribution of the saliency in the latent image, which guides the blind deblurring in various scenarios. Furthermore, an adaptive iteration strategy is proposed to adjust the number of iterations by evaluating the performance of the latent image and the similarity of the estimated blur kernel. The negative influence of overabundant iterations in each scale is effectively restrained in this way. Experiments on publicly available image deblurring datasets demonstrate that the proposed algorithm achieves state-of-the-art deblurring results with small computational costs.