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Abstract 
 

In this paper, an adaptive iterative algorithm is proposed for motion deblurring by using the 
salient intensity prior. Based on the observation that the salient intensity of the clear image is 
sparse, and the salient intensity of the blurred image is less sparse during the image blurring 
process. The salient intensity prior is proposed to enforce the sparsity of the distribution of the 
saliency in the latent image, which guides the blind deblurring in various scenarios. 
Furthermore, an adaptive iteration strategy is proposed to adjust the number of iterations by 
evaluating the performance of the latent image and the similarity of the estimated blur kernel. 
The negative influence of overabundant iterations in each scale is effectively restrained in this 
way. Experiments on publicly available image deblurring datasets demonstrate that the 
proposed algorithm achieves state-of-the-art deblurring results with small computational 
costs.  
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1. Introduction 

Accumulation of photons in the sensor during a given exposure time is the basic principle of 
photography. In general, the better quality of the final image depends on more photons reach 
the sensor to reduce the photonic noise. However, during the exposure process, the movement 
of objects or camera shake generates blur because the photons are accumulated in neighboring 
pixels. The mathematical model of the blur process can be formulated as a convolution 
operation: 

 

B I K N= ⊗ + ,                                                      (1) 
where I  is the latent image, K  is the blur kernel, N  is introduced random noise, B  is the 
blurred image, and ⊗  is the convolution operator. Blind image deblurring is a classical 
inverse problem that aims to recover a sharp latent image I  and a blur kernel K  from a 
blurred image B . 

Impressive progress has been made in estimating clear images in recent years, including 
both direct [1][2] and iterative [3][4][5][6] blind deblurring methods. While the iterative 
kernel estimation is easily stuck into the local minima, it may lead to an unsatisfactory kernel 
and some artifacts in the deblurred result. 

Multi-scale iterative framework and sparse priors contribute much to the success of 
accurately estimating the latent image and blur kernel. Specifically, a mixture of Gaussians 
approximation is used to fit the image gradient’s the heavy-tailed distribution [7]. Then, the 
sparse priors are exploited for estimating both the latent image and the blur kernel [8]. In the 
multi-scale iterative framework, the blur kernel is obtained from the given blurred image and 
the estimated latent image. And then the given blurred image and the blur kernel are used to 
estimate the latent image. The iterative process can alternatively optimize the motion blurred 
kernel and the latent image. 

Deblurring methods which based on sparse gradient priors are not efficient in estimating 
clear latent images, especially for methods formulated within the MAP (maximum a posterior) 
framework [9]. To solve this problem, some methods seek to detect sharp image structures 
with high efficiency [10][11]. The shock filter is used to create a sharpened latent image map 
for kernel estimation. Meanwhile, the bilateral filter and edge thresholding are used to 
suppress small details and noise in the iterative process [10]. The accurate kernel estimation of 
iterative methods mainly depends on the latent image estimation, which is characterized by 
restroring the salient structures and suppress noise in smooth regions. A texture-removal 
strategy is proposed to guide the large-scale structures selection [11]. Similarly, salient region 
segmentation is used to extract sharp foreground regions from the background, which help the 
algorithm to partially estimate the blur kernel and perform deconvolution throughout the entire 
image without introducing artifacts [12]. 

To benefit the kernel estimation, a unified model is proposed to leverage an unnatural 0L  
sparse representation which seeks the gradient sparsity close 0L  to suppress the pernicious 
small-amplitude structures [13][14]. However, this model developed for natural blurred 
images does not perform well in some specific scenarios, such as faces, text, and low 
illumination images. Based on the fact that in the clear text images, the text and the 
background regions have nearly uniform intensity values, the intensity prior and gradient prior 
are proposed for text image deblurring [15]. Considering that the dark channel is less sparse 
during the image blurring process, the dark channel prior [16] is proposed to enforce the 
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sparsity of the dark channels in latent images. The bright channel prior is then proposed to 
deblur images with bright channel pixels [17]. The method based on the extreme channels 
prior achieves efficient restorations by leveraging both the dark and the bright information. 
However, the superior performances of these algorithms [15][16][17] are achieved at the cost 
of higher computational complexity. 

In this paper, a novel algorithm based on salient intensity prior is introduced to accurately 
detect useful structures from complex backgrounds. Since the natural image gradient follows a 
heavy-tailed distribution, the sparse prior for latent images is thus provided. The saliency 
values of image intensity also follow a heavy-tailed distribution. Meanwhile, compared with 
the salient intensity of a clean image, the salient intensity of a blurred image is less sparse. 
During the blurring process, a low-saliency pixel is averaged with neighboring high-saliency 
pixels which lead its saliency increases. Therefore, the sparse distribution of the saliency can 
be used to restore the salient structures in the blurred image. We propose a new regularization 
term to enforce the sparsity of the distribution of saliency in the latent image. In the deblurring 
process, the regularization term facilitates the recovery of clean images in various scenarios 
with small computational costs. 

In the multi-scale iterative framework, the number of iterations in each scale is usually fixed. 
Considering that the number of iterations depends on many factors, such as the complexity of 
the blur kernel, the regions with useful structures in a blurred image and the quality of the 
initial kernel computed in previous scale, a fixed number of iterations is not suitable for each 
scale. In this paper, an adaptive iteration strategy is proposed to adjust the number of iterations 
by evaluating the performance of the latent image and the similarity of the estimated kernel. 
The performance of the latent image is evaluated by gradient cepstrum analysis. Similar to an 
autocorrelation map [1], the cepstrum converts the two-dimensional convolution into an 
addition operation, which is helpful to separate the information of the latent image and the blur 
kernel from a given blurred image [2]. The adaptive iteration strategy effectively restrains the 
negative influence of overabundant iterations, especially in deblurring images with complex 
motion blurred kernels. Moreover, the computational costs are reduced significantly in this 
way. 

Extensive experimental results on real blurred images demonstrate that the proposed 
algorithm performs well in both quantitative and visual evaluations against the state-of-the-art 
methods.  

 

2. Motion Deblurring Based on Salient Intensity Prior 
The iterative process of image deblurring uses a coarse-to-fine manner. The success of 

many image deblurring methods depend on the restoration of intermediate images with sharp 
edges which is important for kernel estimation. However, the assumption that blurred images 
have sharp edges not always hold, especially when deblurring low-illumination images, as 
shown in the middle column of Fig. 1. Therefore, the intensity prior and gradient prior are used 
in recent work. However, the distributions of the intensity of a text image, low-illumination 
image and natural image are quite different. Compared with the dark channel [16] and bright 
channel [17], the method based on salient region detection can detect the salient structures 
more accurately in various scenarios. In this section, we describe the salient intensity prior and 
then its role in motion deblurring. 
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Fig. 1. Given the blurred images (top), a method based on salient region detection is used to compute 
the histograms and detect the salient region (second row). The image saliency follows a heavy-tailed 

distribution (third row). The regions with sharp edges or salient structures detected by this method are 
more accurate than the dark channel (fourth row) and bright channel (bottom). 

 

2.1 Salient Intensity Prior 

By determining the most useful and informative part of a scene, salient region detection is 
widely used in many computer vision applications to decrease the computational complexity. 
The saliency map is built upon the intensity contrast between image pixels. The saliency value 
of a pixel at location p  in latent image I  is defined as follows [19]: 

( )
i

p p i
I I

Sal I I I
∀ ∈

= −∑ ,                                                     (2) 
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where ⋅  represents the distance metric of the intensity and the value of iI  is in the range of 
0-1. Then, the saliency values are normalized and sorted to detect the most salient region and 
the least salient region. 

As shown in the second row of Fig. 1, salient region detection accurately suppresses the 
insignificant structures in blurred images and highlights the salient objects. Compared with the 
dark channel and bright channel, salient region detection can reflect the regions with salient 
structures from the complex background more accurately, which can guide the latent image 
recovery in the deblurring process. 

Similar with the image gradient, image saliency is also sparse, as shown in the third row of 
Fig. 1. The salient object detection can be reformulated to a sparsity pursuit problem because 
salient object can be viewed as the sparse but strong “outliers” within an image [20]. Fig. 2 
shows that the saliency values of both blurred images and clear images follow a heavy-tailed 
distribution. Furthermore, the blurring process tends to increase the saliency of low-saliency 
pixels by weighted averaging of the pixels in the neighborhood. Therefore, the distribution of 
the salient intensity in a blurred image is less sparse than that in a clear image. This property 
not only holds for text images, but it also holds for low-illumination images and natural images. 
Thus, the sparsity of the salient intensity can be used to restore the salient structures in the 
blurred image. 

 

 
Fig. 2. Saliency histograms of both blurred and clear images. Blurred images have fewer pixels with 

zero salient intensity than clear ones, which means that the distribution of the salient intensity in a 
blurred image is less sparse than that in a clear image. 

2.2 Motion Deblurring Model  

A new regularization term 
0

( )S I  is introduced to measure the sparsity of the salient 
intensity. ( )S I  is the saliency map of image I , and it can be defined as follows: 
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
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=
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，

，
,                                            (3) 

where 
minSalI  is the intensity of the least salient pixel. 

In the motion deblurring process, 
0

( )S I  can enforce the sparsity of the salient intensity in 
a latent image. Based on the MAP framework [13][16], the motion deblurring problem can be 
formulated as follows: 

2 2
2 2 0 0,

min ( )
I K

I K B K S I Iγ σ λ⊗ − + + ∇+ ,                              (4) 

where the second term is the prior of the blur kernel K . The third term is the prior of the 
salient intensity of the latent image, which plays an important role in preserving the salient 
structures. The fourth term is the prior of the image gradient, which is used to retain large 
gradients and remove smooth structures, and γ , σ  and λ  are the weight parameters. 

Because it is difficult to solve Eq. (4) directly, a classical motion deblurring method uses an 
alternating minimization algorithm [14]. The blur kernel K  and the latent image I are 
estimated alternatively by fixing each other. Then, the solution of Eq. (4) becomes two 
sub-problems: 

2
2 0 0min ( )

I
I K B S I Iσ λ⊗ − + + ∇ ,                                      (5) 

and 
2 2
2 2min

K
I K B Kγ⊗ − + .                                               (6) 

2.3 Estimating Latent Image 

Because the 0L  regularization term is computationally intractable, Eq. (5) is solved based 
on a half-quadratic splitting technique [14]. By introducing the auxiliary variables s  and 

( ),h vg g g= T  that correspond to ( )S I  and the image gradients, respectively, Eq. (5) can be 
written as follows: 

2 2 2
2 2 2 0 0, ,

min ( )
I u g

I K B S I s I g s gα β σ λ⊗ − + − + ∇ − ++ ,                 (7) 

where α  and β  are the penalty parameters. Eq. (7) can be solved by minimizing I , s  and g  
separately while fixing one another. 

Then, the latent image I  can be solved by the following: 
2 2 2
2 2 2min ( )

I
I K B S I s I gα β⊗ − + − + ∇ − .                         (8) 

The closed-form solution for this least squares minimization problem is as follows: 

1 ( ) ( ) ( )( )
( ) ( ) ( ) ( )

GK B s FI
K K

α β
α β

− + +=
+ + ∇ ∇

F F FF
F F F F

,                        (9) 

where ( )⋅F  and 1( )− ⋅F  denote the fast Fourier transform (FFT) and the IFFT, respectively, 

( )⋅F  is the complex conjugate operator, ( ) ( ) ( ) ( )G h h v vF g g= ∇ + ∇F F F F , and h∇  

and v∇  denote the horizontal and vertical differential operators, respectively. 
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When the latent image I  is given, s  and g  can be solved by the following: 

 

2 2
2 2 0 0,

min ( )
u g

S I s I g s gα β σ λ− + ∇ − + + .                              (10) 

To improve the efficiency of the iteration process, s  and g  are solved together in one 
iteration rather than in separate iterations. 

Eq. (10) is a pixel-wise minimization problem. The solutions of s  and g  can be obtained 
by the following [13]:  

2( ), ( )

0, οtherwise 

S I S Is
σ
α




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  ≥
=

       
,                                               (11) 

and 

    

2

0 οtherwise

I I
g

λ
β






∇ ∇ ≥
=

 

,  

,   
.                                                 (12) 

Compared with other methods based on the image intensity prior, the proposed method 
based on the salient intensity prior can separate the salient structures of blurred images earlier 
in the iterative process. Furthermore, the salient intensity prior also has computational costs 
advantages. 

2.4 Estimating Blur Kernel 
When latent image I  is given, the blur kernel estimation is also a least squares problem. 

The blur kernel K  is optimized by employing the fast deblurring method based on the image 
gradient [10][13]: 

2 2
2 2min

K
I K B Kγ∇ ⊗ −∇ + .                                           (13) 

Similar to traditional methods [10][13], the closed-form solution of this minimization 
problem is as follows: 

  

1 ( ) ( )( )
( ) ( )

I BK
I I γ

− ∇ ∇=
∇ ∇ +

F FF
F F

.                                         (14) 

After the blur kernel K  is obtained, the negative elements are set to zero. Then, the kernel is 
normalized. In the multi-scale iterative deblurring framework, the kernel estimation is also 
carried out in a coarse-to-fine manner.  

2.5 Image Restoration 
The estimated latent image is not the final deblurred result because of the lack of details. So 

based on the estimated blur kernel, the final deblurred image is restored by non-blind 
deconvolution algorithms. In this paper, the low-illumination images and other images are 
restored by non-blind deconvolution algorithms in [21] and [13][15], respectively.  
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3. Motion Deblurring Optimized by Adaptive Iteration Strategy 
Considering the multi-scale iterative framework, the number of iterations depends on many 

factors, such as the complexity of the blur kernel, the regions with useful structures in the 
blurred image and the quality of the initial kernel that was computed in the previous scale, a 
fixed number of iterations is not suitable for each scale. In this section, an adaptive iteration 
strategy is proposed to adjust the number of iterations in each scale. 

3.1 Cepstrum of Latent Image Gradient 
Cepstrum was originally developed for characterizing the seismic echoes resulting from 

earthquakes and bomb explosions. It is the result of the inverse Fourier transform of 
the logarithm of the estimated spectrum of a signal. Similar to the autocorrelation map [1], in 
the cepstrum domain, the two-dimensional convolution is converted into an addition operation, 
which is helpful to separate the information of the latent image and the blur kernel from a 
given blurred image [2]. 

The blur kernel actually describes the path of the random camera shaking or the movement 
of objects during the camera exposure process. The cepstrum of the blurred image gradient is 
neither sensitive to the effect of the random path [2] nor to the random noise which produced 
in the blurring process. Thus, the cepstrum of the blurred image gradient accurately reflects the 
information of the blur kernel: 

1( log(1 ( ) ) )BC B−
∇ = + ∇F F .                                          (15) 

According to the property of the cepstrum, the cepstrum of the blur process is expressed as 
follows: 

B K IC C C∇ ∇ ∇= + ,                                                       (16) 
where KC∇  and IC∇  are the cepstrum of K∇  and I∇ , respectively. Because of the 
difference between the frequency components of K∇  and I∇ , the information of K∇  can 
be extracted from the cepstrum of B∇ . 

As shown in the left column of Fig. 3, compared with the cepstrum of the clear image 
gradient, the cepstrum of the blurred image gradient contains the information of the blur kernel, 
which is symmetric about the origin. The right two columns show the change of the latent 
image and the corresponding cepstrum of the gradient in one image scale. Compared with the 
latent image shown in Fig. 3 (c), Fig. 3 (d) contains significant residual blur, which means that 
overabundant iterations will degrade the latent image. Meanwhile, the difference of the 
cepstrum between the latent image gradient and the blurred image gradient decreases. Thus, 
the performance of the latent image can be evaluated by the mean difference between the 
cepstrum of the intermediate latent image gradient and the cepstrum of the blurred image 
gradient: 

,

1n n
K B I

i j
E C C

M∇ ∇ ∇−= ∑ ,                                             (17) 

where M  is the pixel number of the blur kernel K , and BC∇  and n
IC∇  are the cepstrum of 

the blurred image gradient and the cepstrum of the intermediate latent image gradient, 
respectively. 
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Fig. 3. The cepstrum (bottom) of the gradient of the blurred image, the ground truth and the 

intermediate latent images (top) in one image scale. It is clear that overabundant iterations will degrade 
the performance of the blur kernel. The latent image of the 40th iteration contains significant residual 

blur. 

3.2 Adaptive Iteration Strategy 
To reduce unnecessary computational costs, the similarity of the kernel is proposed to 

evaluate the subtle changes in the estimated blur kernel in the iterative process: 
1

,

1n n n
K

i j
K K

M
ρ −−= ∑ ,                                             (18) 

KE∇  and Kρ  can accurately guide the blur kernel estimation in the iteration process. In this 
way, the negative influence of overabundant iterations in each scale is effectively restrained. 
In the last two or three scales, the adaptive iteration strategy will perform more effectively, 
which largely reduces the computational costs of the motion deblurring algorithm. Algorithm 
1 shows the main steps of the adaptive iteration process on one image scale. 
 
Algorithm1: Motion deblurring algorithm on one image scale. 
Input:    B         The blurred image; 
               K         The blur kernel; 
               maxn     The maximum iterations; 
               σ         The intensity weight; 
               λ         The gradient weight. 
while maxn n<  do 
            α σ← , β λ← . 
             while do //update latent image 
                          Solve for s  and g  using (11) and (12) respectively. 
                          Solve for I  using (9). 
                         1.1α α← , 2β β← , 2i i← . 
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             end while 

             if 1n n
K KE Eε −

∇ ∇>  
                          Solve for K  using (14). 
                         /1.1σ σ← , /1.1λ λ← . 

                          if 52n
K eρ −<  

                                       break 
                          end if 
             else 
                          break 
             end if 
            1n n← + . 
end while 

/ 2σ σ← , / 2λ λ← . 
Output:    K     The blur kernel; 
                  I      The latent image. 
 

The intensity weight σ  and the gradient weight λ  are penalty parameters, which can 
separate details from background in a coarse-to-fine manner. In the beginning of the whole 
deblurring algorithm, these two parameters are initialized as follows: 

2

2

0.005
0.25

k
k

σ
λ −





=
=

,                                                    (19) 

where k  is the kurtosis of blurred image. As shown in Fig. 1, the kurtosis of the text image 
and the low-illumination image are higher than natural image, which means that these images 
contain more intensity information than gradient information. Moreover, high intensity 
weights and low gradient weights are suitable for deblurring these high-contrast images. In the 
adaptive iteration process, ε  is a penalty parameter which that restrains the unfavorable 
factors from the earlier iterations. 
 

4. Experimental Results 
In this section, the proposed algorithm is compared with state-of-the-art image deblurring 

methods on two publicly available image deblurring datasets [9] [18]. And then the proposed 
algorithm is evaluated by using low-illumination images, text images and face images. The 
results of the state-of-the-art algorithms are all generated by their executable programs or 
source codes. The code of our adaptive iterative algorithm based on salient intensity prior is 
provided in Ref. [22].  

4.1 Synthetic Dataset 
To better verify the effectiveness of the proposed algorithm, two image benchmark 

datasets [9][18] are used for quantitative evaluations. The evaluation protocols defined for 
these two datasets are followed for a fair comparison. We first test using the dataset from [18], 
which consists of 48 images with 4 ground truth images and 12 kernels, including several large 
kernels. We compare the proposed algorithm with the algorithms of [7], [8], [10], [11], [21], 
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[16] and [17]. The PSNR value is computed by comparing each restored image with 199 clear 
images captured along the camera’s motion trajectory. As shown in Table 1, the proposed 
algorithm achieves the highest average PSNR among all the algorithms evaluated. The first 
row of Fig. 4 shows the results on a challenging blurred image with large-scale blur kernels. 
Although [11] and [16] are able to address overall deblurring performance, their deblurred 
results also contain some ringing artifacts. The deblurred results of the proposed algorithm 
contain clearer details and fewer artifacts in comparison with other deblurring methods. It can 
also be seen in the third row of Fig. 4. 

 
Table 1 Comparison of average PSNR for dataset [18] 

Author 1 2 3 4 Avg. 
Blurred 27.12 21.30 27.97 23.33 24.93 

Fergus et al [7] 25.58 18.69 26.38 20.28 22.73 
Shan et al [8] 28.59 22.14 28.11 24.73 25.89 

Cho and Lee [10] 30.61 26.03 31.31 27.98 28.98 
Xu and Jia [11] 31.64 26.64 31.45 28.42 29.54 
Whyte et al [21] 30.07 24.46 31.13 26.62 28.07 

Pan et al [16] 32.59 26.90 32.22 28.09 29.95 
Yan et al [17] 32.77 26.19 33.05 28.40 30.10 

Ours 32.22 27.23 33.05 28.79 30.32 
 

 
Fig. 4. Visual comparisons and PSNR of the state-of-the-art algorithms on Blurry2_8 and Blurry3_7 
from the dataset in [18]. The results generated by the proposed algorithm are visually more pleasing. 

 
Then, the proposed algorithm is compared with the algorithms of [10], [13], [15], and [17] 

on the dataset by [9], this dataset includes 4 images and 8 blur kernels. Fig. 5 indicates that the 
proposed algorithm performs better than other algorithms on this dataset in terms of the 
cumulative error ratio. 
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Fig. 5. Comparisons in terms of the cumulative error ratio 

 
The time consumed by the proposed algorithm is compared with other algorithms from [16] 

and [17], which are based on the intensity prior and the gradient prior. For a fair comparison, 
all the algorithms are implemented on a laptop with an Intel Core i7-6700HQ processor and 
4GB memory. As shown in Table 2, the processing of the blur kernel estimation of our 
algorithm for dataset [18] is much faster than the other algorithms. The main reason is that, 
compared to the dark channel prior [16] and the extreme channel prior [17], the computational 
costs of the salient intensity prior are much lower, as shown in Table 3. Furthermore, the 
adaptive iterative strategy effectively restrains the negative influence of overabundant 
iterations in each scale, especially in the last two or three scales. 

 
Table 2. Comparison of average processing time of blur kernel estimation for dataset [18]  

Author Pan et al [16] Yan et al [17] Ours 
Time (s) 2162 4912 96 

 
Table 3. Comparison of average processing time of intensity priors of an 800×800 gray scale image 

Prior Dark Channel Prior [16] Extreme Channel Prior [17] Salient Intensity Prior 
Time (s) 4.702 11.615 0.006 

 

4.2 Real Images 
For most deblurring methods, low-illumination blurred images are particularly challenging 

because they often have saturated pixels which makes high quality kernel estimation very 
difficult. As shown in Fig. 6, compared with the other three methods [15][16][17], the result 
generated by the proposed algorithm has clearer details and fewer artifacts, especially in the 
regions enclosed in red boxes. Fig. 7 shows a visual example from the project dataset of [16], 
where the results of other state-of-the-art algorithms contain significant ringing artifacts [16] 
or residual blur [15][17]. In low-illumination image deblurring, the proposed algorithm based 
on the salient intensity prior can effectively separate the salient structures (blurred high-light 
point) from the dark background. Thus, the estimated blur kernel is more accurate than other 
algorithms, which is propitious to generating results with less ringing artifacts or residual 
blurred artifacts.  
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Fig. 6. Results of low-illumination image. 

 

 
Fig. 7. Results of number plate image. 

 
Fig. 8 shows that our algorithm performs well on a complex blurred text image against the 

other algorithms which based on the image intensity prior and the image gradient prior. As 
shown in the top row of Fig. 8, the proposed algorithm generates clearer results. Furthermore, 
compared to the results generated by other algorithms [15][16][17], both the result and the 
latent image of the proposed algorithm contain less ring artifacts. The latent images show that 
the method based on the salient intensity prior can extract regions with salient structures more 
accurately, which is helpful for image restoration. 

 

 
Fig. 8. Results (top) and latent images (bottom) of text image. 

 
Blurred face images are also troublesome for most state-of-the-art algorithms. Because 

blurred face images contain fewer sharp edges or salient textures, the kernel estimation of 
most motion deblurring algorithms cannot make full use of the image gradient. The left 
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column of Fig. 9 shows a real blurred face image that is obtained from the dataset of [23]. The 
method of [16] cannot generate accurate image intensity in the region of the left eyelash, while 
the method of [15] cannot generate a clear result, as shown in Fig. 9. Compared with other 
algorithms, the results of the proposed algorithm accurately recover the fine details of the 
original latent images. 

 

 
Fig. 9. Results of face image. 

 

5. Conclusion 
We present a novel algorithm for motion deblurring by leveraging a salient intensity prior to 

benefit the latent image restoration. An adaptive iterative strategy is also proposed to adjust 
the number of iterations in each scale, which makes the algorithm perform robustly and fast. 
Extensive experimental results on real blurred images demonstrate that the proposed algorithm 
performs well in both quantitative and visual evaluations against the state-of-the-art methods 
with small computational costs. 
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