• 제목/요약/키워드: Sparse regression

검색결과 58건 처리시간 0.025초

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • 제22권2호
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

Sparse Multinomial Kernel Logistic Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2008
  • Multinomial logistic regression is a well known multiclass classification method in the field of statistical learning. More recently, the development of sparse multinomial logistic regression model has found application in microarray classification, where explicit identification of the most informative observations is of value. In this paper, we propose a sparse multinomial kernel logistic regression model, in which the sparsity arises from the use of a Laplacian prior and a fast exact algorithm is derived by employing a bound optimization approach. Experimental results are then presented to indicate the performance of the proposed procedure.

Feature Extraction via Sparse Difference Embedding (SDE)

  • Wan, Minghua;Lai, Zhihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3594-3607
    • /
    • 2017
  • The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the locality of LLE with a sparse constraint, we developed an improved and unsupervised difference algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of high-dimensional data in small sample size problems. Significantly differing from the existing PCA and LLE algorithms, SDE seeks to find a set of perfect projections that can not only impact the locality of intraclass and maximize the globality of interclass, but can also simultaneously use the Lasso regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments using the Yale and AR face image databases and the USPS handwriting digital databases. The experimental results show that SDE outperforms PCA LLE and UDP attributed to its sparse discriminating characteristics, which also indicates that the SDE is an effective method for face recognition.

MP-Lasso chart: a multi-level polar chart for visualizing group Lasso analysis of genomic data

  • Min Song;Minhyuk Lee;Taesung Park;Mira Park
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.48.1-48.7
    • /
    • 2022
  • Penalized regression has been widely used in genome-wide association studies for joint analyses to find genetic associations. Among penalized regression models, the least absolute shrinkage and selection operator (Lasso) method effectively removes some coefficients from the model by shrinking them to zero. To handle group structures, such as genes and pathways, several modified Lasso penalties have been proposed, including group Lasso and sparse group Lasso. Group Lasso ensures sparsity at the level of pre-defined groups, eliminating unimportant groups. Sparse group Lasso performs group selection as in group Lasso, but also performs individual selection as in Lasso. While these sparse methods are useful in high-dimensional genetic studies, interpreting the results with many groups and coefficients is not straightforward. Lasso's results are often expressed as trace plots of regression coefficients. However, few studies have explored the systematic visualization of group information. In this study, we propose a multi-level polar Lasso (MP-Lasso) chart, which can effectively represent the results from group Lasso and sparse group Lasso analyses. An R package to draw MP-Lasso charts was developed. Through a real-world genetic data application, we demonstrated that our MP-Lasso chart package effectively visualizes the results of Lasso, group Lasso, and sparse group Lasso.

희소 투영행렬 획득을 위한 RSR 개선 방법론 (An Improved RSR Method to Obtain the Sparse Projection Matrix)

  • 안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.605-613
    • /
    • 2015
  • 본 논문은 패턴인식에서 자주 사용되는 투영행렬을 희소화하는 문제를 다룬다. 최근 임베디드 시스템이 널리 사용됨에 따라 탑재되는 프로그램의 용량이 제한받는 경우가 빈번히 발생한다. 개발된 프로그램은 상수 데이터를 포함하는 경우가 많다. 예를 들어, 얼굴인식과 같은 패턴인식 프로그램의 경우 고차원 벡터를 저차원 벡터로 차원을 축소하는 투영행렬을 사용하는 경우가 많다. 인식성능 향상을 위해 영상으로부터 매우 높은 차원의 고차원 특징벡터를 추출하는 경우 투영행렬의 사이즈는 매우 크다. 최근 라소 회귀분석 방법을 이용한 RSR(rotated sparse regression) 방법론[1]이 제안되었다. 이 방법론은 여러 실험을 통해 희소행렬을 구하는 가장 우수한 알고리즘 중 하나로 평가받고 있다. 우리는 본 논문에서 RSR을 개선할 수 있는 세 가지 방법론을 제안한다. 즉, 학습데이터에서 이상치를 제거하여 일반화 성능을 높이는 방법, 학습데이터를 랜덤 샘플링하여 희소율을 높이는 방법, RSR의 목적함수에 엘라스틱 넷 회귀분석의 패널티 항을 사용한 E-RSR(elastic net-RSR) 방법을 제안한다. 우리는 실험을 통해 제안한 방법론이 인식률을 희생하지 않으며 희소율을 크게 증가시킴으로써 기존 RSR 방법론을 개선할 수 있음을 보였다.

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

A Local Linear Kernel Estimator for Sparse Multinomial Data

  • Baek, Jangsun
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.515-529
    • /
    • 1998
  • Burman (1987) and Hall and Titterington (1987) studied kernel smoothing for sparse multinomial data in detail. Both of their estimators for cell probabilities are sparse asymptotic consistent under some restrictive conditions on the true cell probabilities. Dong and Simonoff (1994) adopted boundary kernels to relieve the restrictive conditions. We propose a local linear kernel estimator which is popular in nonparametric regression to estimate cell probabilities. No boundary adjustment is necessary for this estimator since it adapts automatically to estimation at the boundaries. It is shown that our estimator attains the optimal rate of convergence in mean sum of squared error under sparseness. Some simulation results and a real data application are presented to see the performance of the estimator.

  • PDF

Sparse Logistic Regression 기반 비음수 행렬 분석을 통한 성별 인식 (Gender Classification using Non-Negative Matrix Analysis with Sparse Logistic Regression)

  • 허동철;;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.373-376
    • /
    • 2011
  • 얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.

선형보간법에 의한 자료 희소성 해결방안의 문제와 대안 (Robust Interpolation Method for Adapting to Sparse Design in Nonparametric Regression)

  • 박동련
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.561-571
    • /
    • 2007
  • 국소선형회귀모형의 추정량은 좋은 특성을 가지고 있는 추정량으로서 가장 흔히 사용되는 비모수적 회귀모형의 추정량이라고 하겠다. 이러한 국소선형 추정량이 자료가 희박한 구간에서는 심하게 왜곡된 추정결과를 보이는 문제가 있으며, Hall과 Turlach(1997)이 제안한 선형보간법이 이러한 문제에 대한 매우 효과적인 해결방안이라는 것은 잘 알려진 사실이다. 그러나 Hall과 Turlach가 제안한 선형보간법이 이상값에 매우 취약하다는 사실은 아직 지적된 적이 없는 문제이다. 이 논문에서는 이상값의 영향력을 감소시킬 수 있는 수정된 선형보간법에 의한 유사자료의 생성방법을 제안하고, 그 특성을 모의실험을 통하여 기존의 방법과 비교하였다.

Sparse-Neighbor 영상 표현 학습에 의한 초해상도 (Super Resolution by Learning Sparse-Neighbor Image Representation)

  • 엄경배;최영희;이종찬
    • 한국정보통신학회논문지
    • /
    • 제18권12호
    • /
    • pp.2946-2952
    • /
    • 2014
  • 표본 기반 초해상도(Super Resolution 이하 SR) 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나, 네이버 임베딩은 국부 학습 데이터 집합의 크기가 너무 작기 때문에 이에 따른 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)을 이용한 Sparse-Neighbor 영상 표현 학습 방법에 기반한 새로운 알고리즘을 제안하였다. 저해상도 입력 영상이 주어지면 bicubic 보간법을 이용하여 확대된 영상을 얻고, 이 확대된 영상으로부터 패치를 얻은 후 저주파 패치인지 고주파 패치 인지를 판별한 후 각 영상 패치의 가중치를 얻은 후 두 개의 SVR을 훈련하였으며 훈련된 SVR을 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 네이버 임베딩 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.