• Title/Summary/Keyword: Sparse matrix-vector multiplication

Search Result 6, Processing Time 0.021 seconds

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

Acceleration of ECC Computation for Robust Massive Data Reception under GPU-based Embedded Systems (GPU 기반 임베디드 시스템에서 대용량 데이터의 안정적 수신을 위한 ECC 연산의 가속화)

  • Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.956-962
    • /
    • 2020
  • Recently, as the size of data used in an embedded system increases, the need for an ECC decoding operation to robustly receive a massive data is emphasized. In this paper, we propose a method to accelerate the execution of computations that derive syndrome vectors when ECC decoding is performed using Hamming code in an embedded system with a built-in GPU. The proposed acceleration method uses the matrix-vector multiplication of the decoding operation using the CSR format, one of the data structures representing sparse matrix, and is performed in parallel in the CUDA kernel of the GPU. We evaluated the proposed method using a target embedded board with a GPU, and the result shows that the execution time is reduced when ECC decoding operation accelerated based on the GPU than used only CPU.

GPU-based Sparse Matrix-Vector Multiplication Schemes for Random Walk with Restart: A Performance Study (랜덤워크 기법을 위한 GPU 기반 희소행렬 벡터 곱셈 방안에 대한 성능 평가)

  • Yu, Jae-Seo;Bae, Hong-Kyun;Kang, Seokwon;Yu, Yongseung;Park, Yongjun;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.96-97
    • /
    • 2020
  • 랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다.

Random Partial Haar Wavelet Transformation for Single Instruction Multiple Threads (단일 명령 다중 스레드 병렬 플랫폼을 위한 무작위 부분적 Haar 웨이블릿 변환)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.805-813
    • /
    • 2015
  • Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.

CSR Sparse Matrix Vector Multiplication Using Zero Copy (Zero Copy를 이용한 CSR 희소행렬 연산)

  • Yoon, SangHyeuk;Jeon, Dayun;Park, Neungsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.45-47
    • /
    • 2021
  • APU(Accelerated Processing Unit)는 CPU와 GPU가 통합되어있는 프로세서이며 같은 메모리 공간을 사용한다. CPU와 GPU가 분리되어있는 기존 이종 컴퓨팅 환경에서는 GPU가 작업을 처리하기 위해 CPU에서 GPU로 메모리 복사가 이루어졌지만, APU는 같은 메모리 공간을 사용하므로 메모리 복사 없이 가상주소 할당으로 같은 물리 주소에 접근할 수 있으며 이를 Zero Copy라 한다. Zero Copy 성능을 테스트하기 위해 희소행렬 연산을 사용하였으며 기존 메모리 복사대비 크기가 큰 데이터는 약 4.67배, 크기가 작은 데이터는 약 6.27배 빨랐다.

A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations (유한요소 비압축성 유동장 해석을 위한 이중공액구배법의 GPU 기반 연산에 대한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Jung, Hye Dong;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.597-604
    • /
    • 2016
  • A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.