• Title/Summary/Keyword: Sparse Network

Search Result 137, Processing Time 0.029 seconds

Adjustment Program for Large Sparse Geodetic Networks (희박행렬의 기법을 이용한 대규모 측지망의 조정)

  • Lee, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1991
  • This paper presents an overview of a system of computer programs for the solution of a large geodetic network of about 2,000 stations. The system arranges the matrices in systematic sparse form which is applied to observation equations of RR(C)U (Row-wise Representation Complete Unordered) type and to normal equations of RR(U)U (Row-wise Representation Upper Unordered) type. The solution is done by a Modified Cholesky's algorithm in view of large networks. The implementation program are tested in PC-386 by korean new secondary networks, the results show that the sparse techniques are highly useful to geodetic networks in core-storage management and processing time.

  • PDF

Development of executive system in power plant simulator (발전 플랜트 설계용 시뮬레이터에서 Executive system의 개발)

  • 예재만;이동수;권상혁;노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.488-491
    • /
    • 1997
  • The PMGS(Plant Model Generating System) was developed based on modular modeling method and fluid network calculation concept. Fluid network calculation is used as a method of real-time computation of fluid network, and the module which has a topology with node and branch is defined to take advantages of modular modeling. Also, the database which have a shared memory as an instance is designed to manage simulation data in real-time. The applicability of the PMGS was examined implementing the HRSG(Heat Recovery Steam Generator) control logic on DCS.

  • PDF

A Network Reduction using Weak Coupling Method (Weak Coupling Method를 이용한 계통 축약)

  • Lee, H.M.;Rho, K.M.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1067-1069
    • /
    • 1999
  • This paper presents a network reduction using weak coupling method. Weak coupling method of identifying coherent generator groups are proposed. The partitioning technique used in this paper is based on a property of sparse matrix factorization. When a matrix has been factorized, a system is divided into study area, boundary buses and external area. A reduction process for external system starts with the load bus elimination and coherent generator aggregation. An identification of coherent generator group, network partitioning and network reduction are presented.

  • PDF

Two stage neural network for spatio-temporal pattern recognition (시변패턴 인식을 위한 2단 구조의 신경회로망)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2290-2292
    • /
    • 1998
  • This paper introduces Two-stage neural network that is capable of recognizing spatio-temporal patterns. First stage takes a spatio-temporal pattern as input and compress it into sparse spatio-temporal pattern. Second stage is for temporal pattern recognition with nonuniform inhibitory connections and different cell sizes. These are basic properties for detecting a embeded pattern in a larger pattern. The network is evaluated by computer simulation.

  • PDF

An implementation of network optimaization system using GIS (GIS를 이용한 네트워트 최적화 시스템 구축)

  • 박찬규;이상욱;박순달;성기석;진희채
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • By managing not only geographical information but also various kinds of attribute data. GIS presents useful information for decision-makings. Most of decision-making problems using GIS can be formulated into network-optimization problems. In this study we deal with the implementation of network optimization system that extracts data from the database in GIS. solves a network optimization problem and present optimal solutions through GIS' graphical user interface. We design a nitwork optimization system and present some implementation techniques by showing a prototype of the network optimization system. Our network optimization system consists of three components : the interface module for user and GIS the basic network the program module the advanced network optimization program module. To handle large-scale networks the program module including various techniques for large sparse networks is also considered, For the implementation of the network optimization system we consider two approaches : the method using script languages supported by GIS and the method using client tools of GIS. Finally some execution results displayed by the prototype version of network optimization system are given.

  • PDF

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.

Compressing Method of NetCDF Files Based on Sparse Matrix (희소행렬 기반 NetCDF 파일의 압축 방법)

  • Choi, Gyuyeun;Heo, Daeyoung;Hwang, Suntae
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.610-614
    • /
    • 2014
  • Like many types of scientific data, results from simulations of volcanic ash diffusion are of a clustered sparse matrix in the netCDF format. Since these data sets are large in size, they generate high storage and transmission costs. In this paper, we suggest a new method that reduces the size of the data of volcanic ash diffusion simulations by converting the multi-dimensional index to a single dimension and keeping only the starting point and length of the consecutive zeros. This method presents performance that is almost as good as that of ZIP format compression, but does not destroy the netCDF structure. The suggested method is expected to allow for storage space to be efficiently used by reducing both the data size and the network transmission time.

A domain decomposition method applied to queuing network problems

  • Park, Pil-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.735-750
    • /
    • 1995
  • We present a domain decomposition algorithm for solving large sparse linear systems of equations arising from queuing networks. Such techniques are attractive since the problems in subdomains can be solved independently by parallel processors. Many of the methods proposed so far use some form of the preconditioned conjugate gradient method to deal with one large interface problem between subdomains. However, in this paper, we propose a "nested" domain decomposition method where the subsystems governing the interfaces are small enough so that they are easily solvable by direct methods on machines with many parallel processors. Convergence of the algorithms is also shown.lso shown.

  • PDF

DR-LSTM: Dimension reduction based deep learning approach to predict stock price

  • Ah-ram Lee;Jae Youn Ahn;Ji Eun Choi;Kyongwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.213-234
    • /
    • 2024
  • In recent decades, increasing research attention has been directed toward predicting the price of stocks in financial markets using deep learning methods. For instance, recurrent neural network (RNN) is known to be competitive for datasets with time-series data. Long short term memory (LSTM) further improves RNN by providing an alternative approach to the gradient loss problem. LSTM has its own advantage in predictive accuracy by retaining memory for a longer time. In this paper, we combine both supervised and unsupervised dimension reduction methods with LSTM to enhance the forecasting performance and refer to this as a dimension reduction based LSTM (DR-LSTM) approach. For a supervised dimension reduction method, we use methods such as sliced inverse regression (SIR), sparse SIR, and kernel SIR. Furthermore, principal component analysis (PCA), sparse PCA, and kernel PCA are used as unsupervised dimension reduction methods. Using datasets of real stock market index (S&P 500, STOXX Europe 600, and KOSPI), we present a comparative study on predictive accuracy between six DR-LSTM methods and time series modeling.

Social Network Analysis using Common Neighborhood Subgraph Density (공통 이웃 그래프 밀도를 사용한 소셜 네트워크 분석)

  • Kang, Yoon-Seop;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.432-436
    • /
    • 2010
  • Finding communities from network data including social networks can be done by clustering the nodes of the network as densely interconnected groups, where keeping interconnection between groups sparse. To exploit a clustering algorithm for community detection task, we need a well-defined similarity measure between network nodes. In this paper, we propose a new similarity measure named "Common Neighborhood Sub-graph density" and combine the similarity with affinity propagation, which is a recently devised clustering algorithm.