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A DOMAIN DECOMPOSITION METHOD
APPLIED TO QUEUING NETWORK PROBLEMS

PiL SEONG PARK

ABSTRACT. We present a domain decomposition algorithm for solving
large sparse linear systems of equations arising from queuing networks.
Such techniques are attractive since the problems in subdomains can
be solved independently by parallel processors. Many of the methods
proposed so far use some form of the preconditioned conjugate gradient
method to deal with one large interface problem between subdomains.
However, in this paper, we propose a “nested” domain decomposition
method where the subsystems governing the interfaces are small enough
so that they are easily solvable by direct methods on machines with
many parallel processors. Convergence of the algorithms is also shown.

1. Introduction

Domain decomposition is a class of techniques designed to solve ellip-
tic problems on irregular domains. Such methods are based on the idea
that the domain of a certain problem may be regarded as the union of
smaller subdomains of regular shape. Then the original problem may be
solved by considering smaller problems in subdomains and the system
governing the interfaces between subdomains.

In view of the interest in parallel computers, such methods are very
attractive since the problems in subdomains can be solved independently.
Even for sequential computation, a natural partition of the original do-
main often exists, such as in dividing a domain with irregular geometry
into regular subregions for which fast solvers exists (e.g., see [4]), or in
dividing a problem with discontinuous coefficierts into subregions with
constant coefficients.
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Since the system governing the interface between subdomains 1s ex-
pensive to solve, many of the methods proposed so far use some form of
the preconditioned conjugate gradient method, e.g., see (2, 3, 5, 8].

However, in this paper, instead of dealing with one large interface
problem between subdomains, we propose a “nested” domain decompo-
sition method where the subsystems governing the interfaces are small
enough so that they are easily solvable by direct methods on machines
with many parallel processors.

We start with a simple domain decomposition method applied to
queuning network problems, and prove convergence of the resulting 1ter-
ative algorithm. Then we extend the idea to construct a nested domain
decomposition method for parallel processors.

2. Queuing network problems

A Markovian analysis of a queuing network based on solving the Kol-
mogorov equations for the steady-state probability distribution involves
finding the null-vector of a large sparse structured matrix. Quantities of
interest in the study of such networks include the probability of overflow
from one queue to another, and the average waiting time of customers
per queue etc. Most such quantities can be computed from the steady
state probability distribution.

For some models, these probabilities can be obtained analytically.
However, in most cases, such an analytic solution is ot always available
and the balance equation has to be solved explicitly.

Even for systems with a relatively small number of queues and a
small number of waiting spaces and servers per queue, the resulting
linear system Ax = 0 is huge, having dimension n, where n 1s the total
number of states in the network. However the matrix is sparse, highly
structured. and posesses enough algebraic structure that it is possible to
solve some rather large systems.

The matrix is nonsymmetric, singular, irreducible, and has strictly
positive diagonal and non-positive off-diagonal entries, with each col-
amn sum 0. It is known that such a matrix has a one dimensional null
space, and the corresponding null-vector can be chosen to have positive
entries([1]). Hence by adding a normalization condition, we can get a
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unique positive solution. For more details, see [7]. The model problemn
we consider is also from there.

3. Domain decomposition applied to queuing problems

In fact, there is no physical domain in queuing problems, and we
cannot apply domain decomposition technique as is. However, since the
graph of the matrix derived from a k-queue model is the same as that
of a k-dimensional (2k + 1)-point discrete Laplacian operator, we may
regard the Kolmogorov balance equation as the finite discretization of
some continuous problem on a rectangular domain. Therefore we could
apply domain decomposition technique with a fictitious domain in mind.

¥
1
x
1
Relation between states in 2-dimensional grid problems
2-queue problems. on the domain [0, 1] x [0, 1].

Figure 1: Relation between 2-queue problenis and grid problems on
the domain [0,1] x [0, 1].

As an example, Figure 1 shows the relation between a 2-queue overflow
model(with 4 waiting spaces in each queue) and a 2-dimensional grid
problem. In the first figure, each ellipse represerts a state of the queuing
system, and the lines connecting them are possible state transitions. The
ordered pair (7,7) in each ellipse represents the state where there are
customers in the first and j customers in the second queue, respectively.
Note that its graph is exactly the same as that of the 2-dimensional grid
problem on the domain [0,1] x [0,1] on the right.
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Let the fictitious domain and the corresponding grid for a given k-
queue model be as shown in Figure 2. For simplicity, we divide the k-
dimensional domain into only two subregions §2; and 23, the boundary
between the two subregions being I'.

24 I Q,

Figure 2: Domain decomposition into two subregions.

After reordering the unknowns, we can write the solution vector x as

T T T T
x' = (x),%X;,Xr)

where Xx;’s are the subvectors consisting of the variables in the subdo-
mains Q;, 7 = 1,2, respectively, and xr is the subvector consisting of the
variables on the boundary I'. Then the system of equations Ax = 0 can
be written in a block matrix notation as

E, 0 F X1

( 1 ) 0 Ez Fz X2 = 0,
G] G2 H Xr

or equivalently,

X; = — Eg_lF,‘xF, t1=1,2,

2
Xr = - H! E Gix,.
i=1
Combining the above two, we get an eigenvalue problem

(2) Xr = H—l(i GiE"—IR)xF’

=1
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where Xr is the eigenvector corresponding to the eigenvalue of the matrix
H_](Ele G;E;'F;) with the largest modulus.

By dividing into many smaller subdomains, we can make the sizes of
the matrices E; small enough to use direct methods like Gauss elimina-
tion. The computations G;E ' Fixr, i = 1,2, are all independent and
can be performed in parallel.

Qp Iyl Q Iy 9y

Figure 3: Domain decomposition into three subregions by two disjoint
non-adjacent boundaries.

The discussion is still valid even if we divide the original domain into
more than 2 pieces. For example, when the original domain is divided
into 3 subdomains Q;, j = 1,2,3 by 2 boundaries I'; and [y(Figure 3),
the system Ax = 0 becomes

El 0 0 Fl,l 0 X
0 Eg 0 F'z,] FQ‘:‘ X2

(3) Ax = 0 0 E3 0 Fg,g X3 = 0.
Gii Gio 0 H, 0 Xr,

0 Gz'z G2_3 0 H, Xr,

This is of the same form as (1), with some parts of F, G, H being zero.
Note that H = diag(H:, Hz) is block diagonal and separable if the two
boundaries I'; and I'2 are disjoint and non-adjacent to each other.

For notational simplicity and to write more general cases in the form

of (1), define
G

Fi=[F, - Fi), G; == ;
Gl—l,z

Xt = (xF, o xb ) H = diag(H;,... , Hi_,).
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Then, based on domain decomposition of a given domain into ! sub-
regions by the boundaries I';, : = 1,... ,! —1, that are disjoint and non-
adjacent to each other, we could use the following algorithm to solve our
problem.

Algorithm 1
1. Take initial guesses xr, > 0,2 =1,...,1 — 1.
2. Repeat until convergence
1) Solve E;x; = —Fyxy for x;,7 = 1,...,! independently.
2) z;:= E;zl Gijx;, 1 =1,...,l—1 independently.
3) Solve H;xr; = —z, for xr;, 1 = 1,... ,{ — 1 independently.
Note that each step can be computed by parallel processors indepen-
dently, and even some inner computations(for example, Fixr in step
2.1), etc.) can be also done in parallel.

4. Convergence of the algorithm

We consider the convergence of the “outer” iteration: when it is applied
to queuing problems, assuming that the system governing the interfaces
between subdomains and the smaller problems in each subdomain are
solved exactly by some method(the steps 2.1) and 2.3)).

For brevity, we write the resulting matrix equation from domain de-

E F X[_O
G H xr|

where x; is the subvector consisting of all the variables in any interior
subdomains, xr is the subvector consisting of all the variables on the
interfaces, and the matrix 4 is partitioned accordingly. Note that E is a
diagonally dominant block diagonal M-matrix. After block elimination,

we get
E F S
0 K xr|

where K = H — GE~'F is the Schur complement(e.g., see [6]). Hence
the previous iterative method can be written as(see (2))

composition as

Xr = HulGE—lFxr.
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This can be viewed as the power method using the iteration matrix
H-'GE~'F, the solution being the eigenvector corresponding to the
eigenvalue 1 of the iteration matrix. Hence the iterative method con-
verges if and only if no other eigenvalue has modulus greater than or
equal to 1.

E F
G H
H € CP*P, Then the resulting p x p matrix at the southeast corner

after applying n — p steps of Gauss elimination is the same as the Schur
complement H — GE™'F.

Proor. [6].

LEMMA 1. Let A = [ ] . Ac CrXn B e Clnmp)x(n—p) 4p

LEMMA 2. Let the n x n matrix A have column sums 0, with pos-
itive diagonal entries and nonpositive off-diagonal entries. Then, after
applying n — p steps of Gauss elimination, the resulting p x p matrix at
the south-east corner has column sums 0 too.

Proo¥F. Let (lE‘I;-—” denote the (z,7) entry of the matrix A after
application of & — 1 steps of Gauss elimination. Assume the assertion is
true, i.e., column sums of the (n — Ak 4+ 1) x (n — k + 1) submatrix in the
southeast corner are all zero. Hence

n
Zaif{l) =0, j=k...,n
=k

(k

To annihilate the entries in the Ath column a; }:1)

yi=k+1,...,n,

multiply the kth row by a_(i'kk_”/a(kkz. and subtract from the :th row.
Therefore after k-steps of Gauss elimination, the (7,j) entry of the re-
sulting matrix will be

S0 _ a; ; t=1,...,k, J=1,...,n,
v (k—1) (k—1) (k=1), (k—1) .
a, ; — G A @y g j= kk+1,...,n.

Then the jth column sum, j =k +1,... ,n1s

n n n

(k) (k=1) (k--1} (k=1), (k=1)
a;, = Z a4; QGx G [k

1=h+1 1=hk+1 i=k+1
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n n
. (k—1) (k=1) ; (k=1) Gk
= Z Qi; T /Oy a;
t=k4+1 t=k+1
n
(k=1) (k —-1) (k 1) (k—1)
= Z a;; /ay (—a Ay )
i=k+1

*Z (k—1) _

LEMMA 3. Let A be a matrix whose column sums are all 0, with
positive diagonal entries and nonpositive off-diagonal entries. Then, for
any splitting A= M — N, p(M~'N) = 1.

Proor. [7].

DEFINITION 1. (Ortega [9]) A matrix A € R**" is an M-matrix if
A7? >0and a;; <0, #J.

LEMMA 4. Let A € R™*" be strictly or irreducibly diagonally domi-
nant and assume that a;; < 0,7 # j, and a;; > 0,72 =1,2,... ,n. Then
A is an M-matrix.

Proo¥r. [9].

LEMMA 5. The inverses of the matrices E and H are nonnegative.

PROOF. Since the matrices £ and H are strictly diagonally dom-
inant, and have positive diagonal entries and nonpositive off-diagonal
entries, they are M-matrices by Lemma 4. Therefore by Definition 1,
their inverses are nonnegative.

LEMMA 6. p(H™'GE™'F)=1.

PROOF. By Lemma 1, the Schur complement is the same as that
obtained by application of some steps of Gauss elimination, and hence
the iteration matrix K has zero column sums. Note that £ and H
are M-matrices, F and G are nonpositive, and E~! is nonnegative by
Lemma 5. Hence all the off-diagonal entries of the Schur complement
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K = H—GE™'F must be nonpositive. Since each column sum of K is 0
by Lemma 2, diagonal entries of " must be strictly positive. Therefore
p(H"'GE~'F) = 1 by Lemma 3.

LEMMA 7. The iteration matrix T = H™'GE™'F is nonnegative.

PROOF. By Lemma 5, H™! and E~! are nonnegative. In addition,
F and G are nonpositive matrices. Hence the iteration matrix T must
be nonnegative.

THEOREM 1. The previous algorithm converges for any choice of ini-
tial guess xr. the asymptotic rate of convergence being |A2|, where Ay is
the the second largest eigenvalue in modulus of the iteration matrix T.

ProoF. By Lemma 6, p(T) = 1. Since T is nonnegative by Lemma
7, it has only 1 eigenvalue on the unit circle by the Perron-Frobenius
theory(e.g., see [10] or {11]), and the iterative method converges to the
correct solution. Since the above method is also a power method, the
convergence rate is clear.

5. Nested domain decomposition

Algorithm 1 considers “1-level” domain decomposition, i.e., a method
to divide the original domain by one or more boundaries in one step.
However, we can apply the idea recursively to reduce not only the size
of the interior domain problems in each subdomain but also the size of
the problems governing the interfaces between them, by using the nested
domain decomposition technique described below.

For example. assume that we would like to divide the original domain
into 6 subdomains. Instead of dividing the domain into 6 pieces in one
step, we first divide it into 3 pieces by the boundaries I'y and I';(Say. “the
first level™.). Then we further split the subdomains by the boundaries
Iy 1, T21, and Ty (Say, “the second level”. T, ; means that it is the jth
boundary in the ith region in the first level.), as shown in Figure 4. In
this manner, we can recursively divide the original domain into many
small subdomains, keeping each interface problem small.

Let the resulting 6 subdomains be Q;;, 7 = 1,2,3, 7 = 1.2, and x,
be the subvector that consists of thie unknowns at the grid points in §2;;.
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In addition, let xr; be the subvector consisting of the unknowns on the
boundary T';, and Xr,;; be the subvector for the boundary T; ;. Using
similar notations as before, the resulting matrix A4 in the system Ax = 0

S)u QZ.H
§19y
T - i T
Lror, o Iy 3,1
Q4 0 23,
22

Figure 4: Nested domain decomposition.

is given by
EY 0 Y PlY o
0 EA(?I ) I‘g 11) 0 0 P‘l 11) 0
G\ a\t) uiv R o
(2) (2] (2 (2)
El Fl,] Pl,l 1)1,2
0 o B RY 0 P P
® 61 oy mf? R A
~(3) {(3) (3)
£y 0 I'1,1 0 Pl,_)
0 0 o E® K% o PP
G 6P H® o P
1, 2 V2
1 1 1 2) 2 2
Qi o) st @ Q¥ s 0 0 0o Hy 0
() 52 o2 5B HB) (3
| 0 0 21 @22 i 21 @22 S 0 Hp, |

where the superscript (k) means that the matrix is related to the kth
subdomain in the first level. Correspondingly, the solution vector x can
be partitioned as

(5)
T __ [T T T T T T T T T T T
X = [xl,la X120 X1y 5 X210 X295 Xp, 0 X3, X302, Xp, 5 X1 XT,

More generally, consider the case when the original domain is divided
into [ subregions first, and then each of them is divided again into m
pieces(Let’s call it (I, m)-decomposition.). We assume that the domain is
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decomposed by the boundaries that are disjoint from and non-adjacent
to each other. For simplicity, introduce the notations

[ Eil) 0 F(l) Fl(,lz)n—l
EY F“) e B
Ei=| 0 Ew  Fy o Fyha
G\ ¢\ - e, HY .. 0
(1) (1 (1) (1)
Gm—-l 1 G 1—1,2 77 Gm—l ,m 0 Hm—-l ]
and
r (1) A _ -
Plyj X:1
(4)
F .= Pm J X, = Xi,m
1, — 9 ) [ Xr. )
R]‘) Fl,l
(l X7,
Rm—l,]- LXT mo1
_ (5) (J) (1)
Gly]'—‘ I: i1 7 Ql mo u17 : Sl m—1]~»

fore=1,...,0, 7 =1,... ,m. Equations (4) and (5) are for the system
when ! = 3 and m = 2.

Hence the system for the 2-level (I,m)-decomposition can be written
as

[ £ 0 Fi1 Fraooil T xi ]
Es sy Fy i X2
Ax = 0 E Fiy Fii- X = (),
G1’1 G1 2 Gl,( H] 0 Xr,
Gt Giogp Giggr 0 Hi_ ] LX)

- s
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which is exactly in the same form as (3). For k-queue models, all the
H;’s and Hf])’s are (2k — 1)-diagonal matrices, and all the G, ; and Fi;
are sparse and some of them are zero matrices depending on the values
of z and j.

Now we show how the two-level nested domain decomposition can
be computed, and prove the convergence. Since general algorithms for
arbitrary decomposition can be very complicated, we rather show an al-
gorithm to solve the system for 2-level (3,2)-decomposition as an example
so that readers can understand basic ideas easily.

Using (4) and (5), the system Ax = 0 for 2-level (3, 2)-decomposition
can be written as
(6)

BY o B PP
o | 3 | o[ A |
oy ofy ai| bl e
2

3
o, == 3 (3 Qxsa+ S0, ), 0= 1,
i=1

k=1

Lo

The inner loop (6) can be written as

I
—
o
w
~
]
fu—
(]

2
Eﬁl)xi’j - (Z P](,lk?xfk) - F](,zl)xr‘i,la ?
k=1
Hxr,, == 3 (6% + Rg'jjxr,), i=1,2.
j=1

Hence we can use the following algorithm to solve the systemn A4x = 0
for 2-level (3,2)-decomposition.
Algorithm 2 [ 2-level (3,2)-decomposition algorithm ]
1. Take initial guesses xr, > 0 and xr,, > 0.
2. Repeat until convergence of xr,’s,
1) Repeat until convergence of xr, ,’s,
1. Solve E](vl)x,-,]‘ = —(Zizl P;,zzxrk) — F;:l)x”l for x; ;, 1=
1,2,3, y = 1,2 indep.
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2. v:= Z?zl(th}x,‘J + Rﬁ%xr’ ), +=1,2,3 indep.

3. Solve Hl(")xr,.v1 = —v for xp;, 1=1,2,3 indep.
2) Z; = ijl(Zi___] QE,JIij,k + SE’JI)XI‘).J;J, 7 = 1,2 indep.
3) Solve Hixr; = —z, for xpr,, 1 =1,2 indep.

Now we prove the convergence of such an algorithm for general (I, m)-
decomposition. Convergence proof of the outer iteration is already given
in the previous section. Hence we only have to consider the convergence
of the inner loop like the steps 2.1.1 - 2.1.3. Since the matrix for the inner
loop is small compared to the original problem, we also assume that the
steps like 2.1.1 and 2.1.3 are solved exactly by some direct method.

For brevity, we write the inner loop of (I, m)-decomposition (like (6))

as
E F X7 RS
G H Xr - Ir2 ’

where x7 = xTy, oo xD ) xE = [XIT\',’I, e xITi’m_l], and the matrix

and the righthand side are partitioned accordingly. After block elimina-

tion, we get
E F x| e
0 K xr| |

” U -— . '
where ' = H — GE~'F is the Schur complement as before, and ry =
r; — GE~'r;. Hence the previous iterative method, which is equivalent

- ! .
to Kxr = r,, can be written as

k)

Xr = H_]GE“IFXF + H 'lrlz.

The following is a lemma about the necessary and sufficient condition
for such an iterative method to converge to the desired solution. The
superscript (m) means that its the mth iterate(in this lemma only).

LEMMA 8. Let I-T be a nonsingular matrix Then a general iterative
method
x{(mHD — pylm) b, m>0

converges to the unique solution of (I — T)x = b if and only if pT)< 1.
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PRrROOF. [11]

Hence the iterate of the inner loop is guaranteed to converge to the
solution of Kxr = r, if and only if p(H 'GE~'F) < 1. The proof is
similar to that in the previous section. Note that each matrix for the
inner loops is a diagonal block of the original matrix, and its column
sums are all strictly positive.

LEMMA 9. Let the n x n matrix A have positive column sums, with
positive diagonal entries and nonpositive off-diagonal entries. Then, after
applying n — p steps of Gauss elimination, the resulting p x p matrix at
the south-east corner has positive column sums too.

PROOF. The proof is exactly the same as that of Lemma 2, except

that 30 aﬁﬁ-—l) > 0 at the end.

LEMMA 10. Let A be an n x n matrix whose column sums are all
positive, with positive diagonal entries and nonpositive off-diagonal en-
tries. Then, for any splitting A = M — N where M is an M-matrix,
p(M™IN) < 1.

PROOF. Since Y., ai; >0forj=1,2,...,n,
efA=eT (M -N)>0 columnwise,
where e is the vector of all 1’s. This implies
(M — N)Te >0 rowwise.

Since M is an M-matrix, M ™! > 0 and so is its transpose. Therefore
premultiplying by M ~T and simplifying,

e> M TNTe rowwise.

This means that the maximum row sum of M “TN'T is less than 1 or
IM~TNT|| < 1. But

15> |IM"TNT||se > p(M~TNT) = p(NM™) = p(M™IN).
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LEMMA 11. The inverses of the matrices E and H are nonnegative.

PROOF. Same as that of Lemma 5.

LEMMA 12, p(H™'GE"'F) < 1.

ProofF. By Lemmas 1 and 9, the matrix K = H — GE~'F has
positive column sums. Note that E and H are M-matrices, F and G are
nonpositive, and E~! is nonnegative by Lemma 11. Hence all the off-
diagonal entries of the Schur complement K must be nonpositive. Since
each column sum of I is positive by Lemma 9, diagonal entries of I
must be strictly positive. Therefore p(H !GE~!'F) < 1 by Lemma 10.

Hence we can state

THEOREM 2. The inner loop of a general 2-level algorithm like Al-
gorithm 2 converges for any choice of initial guesses xr, and xr, ;. the
asymptotic rate of convergence being p(H 'GE~'F).

We can easily extend the idea to arbitrary number of levels. The
convergence proof is still valid for arbitrary number level domain de-
composition. For the speed of convergence, the inner loop is dependent
on the spectral radius of the inner iteration matrix, However the outer
loop is dependent on the modulus of the second largest eigenvalue of the
outer iteration matrix, the estimation of its size is still open.

One of the advantages of the domain decomposition technique applied
to queuing problems is that, unlike normal grid problems where domain
decomposition is subject to the properties of the problem, we can divide
the fictitious domain as we like without any restrictions since the queuing
problem does not have a physical domain.

Moreover, the domain decomposition technique can be applied to any
queuing problems in purely algebraic sense, even if there is no corre-
sponding continuous equation whose finite discretization is similar to
the quewing problem.
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