• Title/Summary/Keyword: Sparse Network

Search Result 137, Processing Time 0.024 seconds

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

Tegumental ultrastructure of juvenile and adult Echinostoma cinetorchis (이전고환극구흡충 유약충 및 성충의 표피 미세구조)

  • 이순형;전호승
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.2
    • /
    • pp.65-74
    • /
    • 1992
  • The tegumental ultrastructure of juvenile and adult Echinostoma cinetorchis (Trematoda: Echinostomatidae) was observed by scanning electron microscopy. Three-day (juvenile) and 16-day (adult) worms were harvested from rats (Sprague-Dawley) experimentally fed the metacercariae from the laboratory-infected fresh water snail, Hippeutis cantori. The worms were fifed with 2.5% glutaraldehyde, processed routinely, and observed by an ISI Korea DS-130 scanning electron microscope. The 3-day old juvenile worms were elongated and ventrally curved, with their ventral sucker near the anterior two-fifths of the body. The head crown was bearing 37∼38 collar spines arranged in a zigzag pattern. The lips of the oral and ventral suckers had 8 and 5 type II sensory papillae respectively, and bewteen the spines, a few type III papillae were observed. Tongue or spade-shape spines were distributed anteriorly to the ventral sucker, whereas peg-like spines were distributed posteriorly and became sparse toward the posterior body. The spines of the dorsal surface were similar to those of the ventral surface. The 16-day old adults were leaf-like, and their oral and ventral suckers were located very closely. Aspinous head crown, oral and ventral suckers had type II and type III sensory papillae, and numerous type I papillae were distributed on the tegument anterior to the ventral sucker. Scale-like spines, with broad base and round tip, were distributed densely on the tegument anterior to the ventral sucker but they became sparse posteriorly. At the dorsal surface, spines were observed at times only at the anterior body. The results showed that the tegument of E. cinetorchis is similar to that of other echinostomes, but differs in the number and arrangement of collar spines, shape and distribution of tegumenal spines, and type and distribution of sensory papillae.

  • PDF

Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

  • Kim, Mingun;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.107-120
    • /
    • 2014
  • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

A Study on the Effects of User Participation on Stickiness and Continued Use on Internet Community (인터넷 커뮤니티에서 사용자 참여가 밀착도와 지속적 이용의도에 미치는 영향)

  • Ko, Mi-Hyun;Kwon, Sun-Dong
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.41-72
    • /
    • 2008
  • The purpose of this study is the investigation of the effects of user participation, network effect, social influence, and usefulness on stickiness and continued use on Internet communities. In this research, stickiness refers to repeat visit and visit duration to an Internet community. Continued use means the willingness to continue to use an Internet community in the future. Internet community-based companies can earn money through selling the digital contents such as game, music, and avatar, advertizing on internet site, or offering an affiliate marketing. For such money making, stickiness and continued use of Internet users is much more important than the number of Internet users. We tried to answer following three questions. Fist, what is the effects of user participation on stickiness and continued use on Internet communities? Second, by what is user participation formed? Third, are network effect, social influence, and usefulness that was significant at prior research about technology acceptance model(TAM) still significant on internet communities? In this study, user participation, network effect, social influence, and usefulness are independent variables, stickiness is mediating variable, and continued use is dependent variable. Among independent variables, we are focused on user participation. User participation means that Internet user participates in the development of Internet community site (called mini-hompy or blog in Korea). User participation was studied from 1970 to 1997 at the research area of information system. But since 1997 when Internet started to spread to the public, user participation has hardly been studied. Given the importance of user participation at the success of Internet-based companies, it is very meaningful to study the research topic of user participation. To test the proposed model, we used a data set generated from the survey. The survey instrument was designed on the basis of a comprehensive literature review and interviews of experts, and was refined through several rounds of pretests, revisions, and pilot tests. The respondents of survey were the undergraduates and the graduate students who mainly used Internet communities. Data analysis was conducted using 217 respondents(response rate, 97.7 percent). We used structural equation modeling(SEM) implemented in partial least square(PLS). We chose PLS for two reason. First, our model has formative constructs. PLS uses components-based algorithm and can estimated formative constructs. Second, PLS is more appropriate when the research model is in an early stage of development. A review of the literature suggests that empirical tests of user participation is still sparse. The test of model was executed in the order of three research questions. First user participation had the direct effects on stickiness(${\beta}$=0.150, p<0.01) and continued use (${\beta}$=0.119, p<0.05). And user participation, as a partial mediation model, had a indirect effect on continued use mediated through stickiness (${\beta}$=0.007, p<0.05). Second, optional participation and prosuming participation significantly formed user participation. Optional participation, with a path magnitude as high as 0.986 (p<0.001), is a key determinant for the strength of user participation. Third, Network effect (${\beta}$=0.236, p<0.001). social influence (${\beta}$=0.135, p<0.05), and usefulness (${\beta}$=0.343, p<0.001) had directly significant impacts on stickiness. But network effect and social influence, as a full mediation model, had both indirectly significant impacts on continued use mediated through stickiness (${\beta}$=0.11, p<0.001, and ${\beta}$=0.063, p<0.05, respectively). Compared with this result, usefulness, as a partial mediation model, had a direct impact on continued use and a indirect impact on continued use mediated through stickiness. This study has three contributions. First this is the first empirical study showing that user participation is the significant driver of continued use. The researchers of information system have hardly studies user participation since late 1990s. And the researchers of marketing have studied a few lately. Second, this study enhanced the understanding of user participation. Up to recently, user participation has been studied from the bipolar viewpoint of participation v.s non-participation. Also, even the study on participation has been studied from the point of limited optional participation. But, this study proved the existence of prosuming participation to design and produce products or services, besides optional participation. And this study empirically proved that optional participation and prosuming participation were the key determinant for user participation. Third, our study compliments traditional studies of TAM. According prior literature about of TAM, the constructs of network effect, social influence, and usefulness had effects on the technology adoption. This study proved that these constructs still are significant on Internet communities.

Resolving the 'Gray sheep' Problem Using Social Network Analysis (SNA) in Collaborative Filtering (CF) Recommender Systems (소셜 네트워크 분석 기법을 활용한 협업필터링의 특이취향 사용자(Gray Sheep) 문제 해결)

  • Kim, Minsung;Im, Il
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used

    . Past studies to improve CF performance typically used additional information other than users' evaluations such as demographic data. Some studies applied SNA techniques as a new similarity metric. This study is novel in that it used SNA to separate dataset. This study shows that performance of CF can be improved, without any additional information, when SNA techniques are used as proposed. This study has several theoretical and practical implications. This study empirically shows that the characteristics of dataset can affect the performance of CF recommender systems. This helps researchers understand factors affecting performance of CF. This study also opens a door for future studies in the area of applying SNA to CF to analyze characteristics of dataset. In practice, this study provides guidelines to improve performance of CF recommender systems with a simple modification.

  • Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

    • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
      • Journal of Korea Water Resources Association
      • /
      • v.53 no.7
      • /
      • pp.493-505
      • /
      • 2020
    • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

    Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

    • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
      • Economic and Environmental Geology
      • /
      • v.39 no.4 s.179
      • /
      • pp.369-384
      • /
      • 2006
    • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.