• Title/Summary/Keyword: Spark generation

Search Result 68, Processing Time 0.025 seconds

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

A Study on the Planning and Management of Community Space for the Elderly in Local Community - Mainly on the Elderly Complex Space in Japan (지역 공동체에서의 고령자 커뮤니티 공간 계획과 운영에 관한 연구 - 일본 고령자 복합공간을 중심으로)

  • Park, Haesun;Eun, Nansoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.2
    • /
    • pp.49-61
    • /
    • 2020
  • Purpose: With particular focus on the analysis of elderly community space in local communities, this study aims to propose policies and points to consider in the planning and management of community space that can encourage the elderly to actively participate in community activities. Methods: The study explores five different Japanese community spaces that have been utilized as platforms for intergenerational interactions; the research was carried out by literature review, field work and interviews. Results: The results are as follows. First, the planning of the community space for the elderly must be combined with the space that the locals often use. Community space should not be seen as a place for a specific generation, but for everyone to interact with each other at any time; hence it must be fostered to be accessible for anyone regardless of age. Second, community space for the elderly requires to be planned as an accessible place for everyone such as cafes and restaurants. The adjacent areas require social infrastructure like libraries and public baths which are frequently used by people from various age groups. Third, in order to spark off the intergenerational community space as the stronghold of local communities, it needs to be a place where the elderly is given sufficient role and meaning as a member of the community. To achieve this, it is essential to support the locals to take active measures in creating job opportunities for the elderly and the disabled, and to develop voluntary self-sufficiency and volunteering programs.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Fabrication and Characterization of Ceramics and Thermal Barrier Coatings of Lanthanum Zirconate with Reduced Rare-earth Contents in the La2O2-ZrO2 System (희토류 저감형 란타눔 지르코네이트(La2O2-ZrO2계) 세라믹스와 열차폐코팅의 제조 및 특성평가)

  • Kwon, Chang-Sup;Lee, Sujin;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.413-419
    • /
    • 2015
  • Lanthanum zirconate, $La_2Zr_2O_7$, is one of the most promising candidates for next-generation thermal barrier coating (TBC) applications in high efficient gas turbines due to its low thermal conductivity and chemical stability at high temperature. In this study, bulk specimens and thermal barrier coatings are fabricated via a variety of sintering processes as well as suspension plasma spray in lanthanum zirconates with reduced rare-earth contents. The phase formation, microstructure, and thermo-physical properties of these oxide ceramics and coatings are examined. In particular, lanthanum zirconates with reduced rare-earth contents in a $La_2Zr_2O_7-4YSZ$ composite system exhibit a single phase of fluorite or pyrochlore after fabricated by suspension plasma spray or spark plasma sintering. The potential of lanthanum zirconate ceramics for TBC applications is also discussed.

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF

Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying (기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구)

  • Jung-Joon Kim;Sang-Min Yoon;Deok-Hyun Han;Jongmin Byun;Young-Kyun Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

A Study on the Safety Estimation of Wiring Connection Connector Manufactured by Housing Type (하우징 형태(Housing Type)로 제작된 배선 연결 커넥터의 안전성 평가에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • The purpose of this study is to evaluate the safety of a wire connector fabricated for the effective installation of a lighting fixture including its contact resistance, insulation resistance, withstanding voltage characteristics, etc., and to provide the basis for the analysis and judgment of PL(Product Liability) dispute by presenting a damage pattern due to a general flame and overcurrent. This study applied the Korean Standard (KS) for the incombustibility test of the connector using a general flame and performed an overcurrent characteristics test of the connector using PCITS (Primary Current Injection Test System). The contact resistance of the housing connector was measured using a high resistance meter and the insulation resistance was measured using a multimeter. In addition, a supply voltage of AC 1,500V for testing the withstanding voltage characteristics was applied to both ends of the connector. Measurement was performed on 5 specimens and the measured values were used as a basis for judgment. Since the connector is fabricated in the form of a housing, it can be connected and separated easily and has a structure that allows no foreign material to enter. In addition, since it has a structure that allows wires to be connected only when their polarity is identical, any misconnection that may occur during installation can be prevented. When the incombustibility test was performed by applying a general flame to the connector, it showed outstanding incombustibility characteristics and the blade and blade holder connected to the housing remained firmly secured even after the insulation sheath (PVC) was completely destroyed by fire. In addition, the mechanism of the damaged connecting wire showed a comparatively uniform carbonization pattern and it was found that some residual melted insulation material was attached to both ends. In the accelerated life test (ALT) to which approximately 500% of the rated current was applied, the connector damage proceeded in the order of white smoke generation, wire separation, spark occurrence and carbonization. That is, it could be seen that the connector damaged by overcurrent lost its own metallic color with traces of discoloration and carbonization. The contact resistance of the connector at a normal state was 2.164mV/A on average. The contact resistance measured after the high temperature test was 3.258mV/A. In addition, the insulation resistance after the temperature test was completed was greater than $10G\Omega$ and the withstanding voltage test result showed that no insulation breakdown occurred to all specimens showing stable withstanding voltage and insulation resistance characteristics.

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.