• Title/Summary/Keyword: Spark Plasma Sintering

Search Result 425, Processing Time 0.027 seconds

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Spark Plasma Sintering of Stainless Steel Powders Fabricated by High Energy Ball Milling

  • Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2014
  • The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.

Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 탄소나노튜브 강화 SKD11 금형강의 분말소결 특성)

  • Moon, Je-Se;Jung, Sung-Sil;Lee, Dae-Yeol;Jeong, Young-Keun;Kang, Myung Chang;Park, Chun-Dal;Youn, Kook-Tae
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.157-162
    • /
    • 2015
  • SKD11(ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol.% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out SKD11 carbon nanocomposites.

Characteristics of Mg97Y2Zn1 Alloy Compacts Prepared by Spark Plasma Sintering Process (방전플라즈마 소결공법을 이용한 Mg97Y2Zn1 합금 소결체의 특성평가)

  • Hong, Ji-Min;Son, Hyeon-Taek;Chang, Se-Hun;Lee, Jae-Seoul;Cha, Yong-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.337-341
    • /
    • 2007
  • [ $Mg_{97}Zn_1Y_2$ ] alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process. The atomized $Mg_{97}Zn_1Y_2$ alloy particles were entirely spherical in shape and dendritic microstructure. The compacts sintered by SPS process had theoretical density more than 99%. The compressive yield strength was decreased as sintering temperature increased. It was found that the compressive strength showed the maximum value of 303MPa at the $Mg_{97}Y_2Zn_1$ specimen sintered under load of 255 MPa at $350^{\circ}C$.

Spark Plasma Sintering Behavior of Binderless WC Powders

  • Kim, Hwan-Tae;Park, Dong-Wook;Kim, Ji-Soon;Kwon, Young-Soon;Kwon, Hye-Suk;Baek, Eung-Ryul
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2003
  • Pure WC powders which does not include a binder phase were consolidated by spark plasma sintering (SPS) process at 1600~185$0^{\circ}C$ for 0~30 min under 50 MPa. Microstructure alid mechanical properties of binderless WC prepared by SPS were investigated. With increasing sintering temperature, sintered density and Vickers hardness of binderless WC increased. The fracture toughness of binderless WC was 7~15 MPa $m^{1/2}$ depending on the sintered density and decreased with increasing the Vickers hardness. It is found that the binderless WC prepared by SPS at 175$0^{\circ}C$ for 10 min under 50 MPa showed nearly full densification with fine-grained structure and revealed excellent mechanical properties of high hardness (~HV 2400) and considerably high fracture toughness (~7 MPa $m^{1/2}$).

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives (보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering)

  • Lee, Sea-Hoon;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

Fabrication of Nanostructured Alumina by the Combined Processes of Magnetic Pulsed Compaction (MPC) and Spark Plasma Sintering (SPS) (자기펄스성형법 및 통전가압소결법의 연속공정을 이용한 고밀도 나노 알루미나 세라믹의 제조)

  • Lee, J. K.;Hong, S. J.;Lee, M. K.;Rhee, C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.345-350
    • /
    • 2005
  • In this study the nanostructured ${\alpha}-Al_{2}O_3$ ceramics have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent spark plasma sintering (SPS), and their density and hardness properties were investigated. The ${\alpha}-Al_{2}O_3$ prepared by the combined processes showed an increase by $8.4\%$ in density, approaching the value close to the true density, and an enhancement by $210\~400\;Hv$ in hardness, compared to those fabricated by MPC or static compaction method followed by sintering treatment.

Fabrication and Mechanical Properties of ultra fine WC-6wt.%Co by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-6wt.%Co 소결체 제조 및 기계적 특성 평가)

  • Park, Hyun-Kuk;Lee, Seung-Min;Youn, Hee-Jun;Bang, Ki-Sang;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Using the spark plasma sintering process (SPS process), the WC-6wt.%Co hard materials were densified using an ultra fine WC-Co powder. The WC-Co was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and the DC pulse current for 3 min without any significant change in the grain size. The average grain size of WC that was produced through this experiment was about $0.2{\sim}0.8{\mu}m$. The hardness and fracture toughness were about $1816kg/mm^2$ and $15.1MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $1200^{\circ}C$.

Fabrication and Densification of a Nanocrystalline CoSi Compound by Mechanical Alloying and Spark Plasma Sintering

  • Chung-Hyo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.101-105
    • /
    • 2023
  • A mixture of elemental Co50Si50 powders was subjected to mechanical alloying (MA) at room temperature to prepare a CoSi thermoelectric compound. Consolidation of the Co50Si50 mechanically alloyed powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800 ℃ and 1,000 ℃ under 50 MPa. We have revealed that a nanocrystalline CoSi thermoelectric compound can be produced from a mixture of elemental Co50Si50 powders by mechanical alloying after 20 hours. The average grain size estimated from a Hall plot of the CoSi intermetallic compound prepared after 40 hours of MA was 65 nm. The degree of shrinkage of the consolidated samples during SPS became significant at about 450 ℃. All of the compact bodies had a high relative density of more than 94 % with a metallic glare on the surface. X-ray diffraction data showed that the SPS compact produced by sintering mechanically alloyed powders for 40-hours up to 800 ℃ consisted of only nanocrystalline CoSi with a grain size of 110 nm.

EFFECTS OF TiC ADDITION ON STRAIN-INDUCED MARTENSITE TRANSFORMATION AND MECHANICAL PROPERTIES OF NANOCRYSTALLINE Fe-Mn ALLOY FABRICATED BY SPARK PLASMA SINTERING

  • JUNHYUB JEON;SEUNGGYU CHOI;NAMHYUK SEO;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1249-1254
    • /
    • 2020
  • The effect of TiC content on the microstructure and mechanical properties of a nanocrystalline Fe-Mn alloy was investigated by XRD analysis, TEM observation, and mechanical tests. A sintered Fe-Mn alloy sample with nano-sized crystallites was obtained using spark plasma sintering. Crystallite size, which is used as a hardening mechanism, was measured by X-ray diffraction peak analysis. It was observed that the addition of TiC influenced the average size of crystallites, resulting in a change in austenite stability. Thus, the volume fraction of austenite at room temperature after the sintering process was also modified by the TiC addition. The martensite transformation during cooling was suppressed by adding TiC, which lowered the martensite start temperature. The plastic behavior and the strain-induced martensite kinetics formed during plastic deformation are discussed with compressive stress-strain curves and numerical analysis for the transformation kinetics.