• Title/Summary/Keyword: Spark timing

Search Result 169, Processing Time 0.03 seconds

The Effect of Piston Configuration on Combustion and Flame Propagation (피스톤 형상이 연소와 화염전파에 미치는 영향)

  • Jie, Myoung-Seok;Kang, Ki-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.511-517
    • /
    • 2019
  • Two type pistons which had different configuration were made to find out the effects on combustion and flame propagation. Flame propagation speed was obtained by use of the cylinder head gasket ionization probe. Ionization Probe voltage output and flame propagation speed were increased according to the air fuel mixture ratio increase. Exhaust direction flame propagation speed was fastest in combustion chamber and next was front direction, rear direction and intake direction cause of tumbling motion in cylinder. In case of remove the valve pocket in piston, average flame propagation speed changed slowly and spark timing was advanced. Also emission was decreased.

$\mu\textrm{p}$-based Electronic Control System for Automobiles Part1. Electronic Engine Control System (자동차의 마이크로프로셋서를 이용한 전자식 제어시스템에 대한 연구 제1편 : 전자식 엔진 제어시스템)

  • Chae, Suk;Kim, Young-Lip;Liu, Joon;Kim, Kwang-Rak;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 1980
  • An engine control system in which the conventional mechanical ignition system is studied. The contact point of the breaker is replaced by the contactless magnetic pick up sensor from which the information of the speed and the position of the crankshaft is extracted , and further an electronic High Energy Ignitim System Is designed, implemented and tested . The High Energy Igniticwl System increases the secondary spark voltage of the ignition coil from the conventional 10000~15000 volts to the 30000~40000 volts resulting in improving the combustion efficiency. Also, instead of the conventional advimce mechanism forigniliontiming control, a microprocessorbased timinng mechanisn is installed to determine the ignition timing data in response to the engine rpm and the intake manifold vacuum.

  • PDF

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • O, Seung-Muk;Kim, Chang-Eop;Lee, Jin-Uk;Kim, Chang-Gi;Gang, Geon-Yong;Bae, Chung-Sik
    • 연구논문집
    • /
    • s.33
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF

An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector (직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석)

  • 이기형;이창식;이창희;류재덕;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type (바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성)

  • Lee, Jin-Wook;Patel, Rishin;Ladommatos, Nicos
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

The Research About Free Piston Linear Engine with Artificial Neural Network (인공 신경망을 이용한 프리피스톤 리니어 엔진의 연구)

  • AHMED, TUSHAR;HUNG, NGUYEN BA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.294-299
    • /
    • 2015
  • Free piston linear engine (FPLE) is a promising concept being explored in the mid-20th century. On the other hand, Arficial neural networks (ANNs) are non-linear computer algorithms and can model the behavior of complicated non-linear processes. Some researchers already studied this method to predict internal combustion engine characteristics. However, no investigation to predict the performance of a FPLE using ANN approach appears to have been published in the literature to date. In this study, the ability of an artificial neural network model, using a back propagation learning algorithm has been used to predict the in-cylinder pressure, frequency, maximum stroke length of a free piston linear engine. It is advised that, well-trained neural network models can provide fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine (GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구)

  • Kim, K.B.;Song, M.J.;Kim, K.S.;Kang, S.H.;Lee, Y.H.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

Effects of Gas Composition on the Performance and Emissions of Compressed Natural Gas Engines

  • Min, Byung-Hyouk;Chung, Jin-Taek;Kim, Ho-Young;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • Natural gas is considered to be a promising alternative fuel for passenger cars, truck transportation and stationary engines providing positive effects both on the environment and energy security. However, since the composition of natural gas fuel varies with location, climate and other factors, it is anticipated that such changes in fuel properties will affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate the effects of the difference in gas composition on the engine performance and emission characteristics. The results show that THC (Total Hydrocarbon) decreases with increasing Wl (Wobbe Index) and MCP (Maximum Combustion Potential). On the other hand, it is observed that NOx slightly increases as Wl and MCP increase. The TLHV (Total Lower Heating Value of Intake) is proposed in this study as a potential index for compatibility of gas fuels in a CNG engine. There is a variation in power up to 20% depending on the composition of gas when the A/F ratio and spark timing are flexed for a specific gas fuel.

Engine Performance and Emissions Characteristics in an LPG Engine Converted with Mixer and LPi System Fuel Supply Methods (개조된 LPG엔진에서 Mixer와 LPi 연료공급방식의 엔진성능 및 배기특성)

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Han, Sung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1075-1080
    • /
    • 2004
  • In this study, performance and emissions characteristics of an liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system fuel supply methods. A compression ratio for the base diesel engine, 21, was modified into 8, 8.5, 9 and 9.5. The cylinder head and the piston crown were modified to roe the LPG in the engine. Ignition timing was controlled to be at minimum spark advance for best torque (MBT) each case. Engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficiency, CO, THC and NOx. Experimental results showed that the LPi system generates higher power and lower emissions than the conventional mixer fuel supply method.

Methods of Knock Signal Analysis in a S.I. Engine (4 기통 스파크 점화 기관의 노킹 신호 해석 방법)

  • Kim, K.W.;Chun, K.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF