• Title/Summary/Keyword: Span length

Search Result 798, Processing Time 0.023 seconds

Compensation Characteristics of Distorted WDM Signals Depending on Distribution Patterns of SMF Length and RDPS (SMF 길이와 RDPS의 분포 패턴에 따른 왜곡된 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.158-164
    • /
    • 2014
  • For transmitting the ultra-high speed optical signals with better performance, the techniques to suppress or mitigate the signal distortion due to group velocity dispersion and optical Kerr effects are required. Dispersion management (DM), optical phase conjugation, and the combination of these two are promising techniques to compensate for the signal distortion. However, the fixed length of single mode fiber (SMF) and the fixed residual dispersion per span (RDPS) usually used in these optical links restricts flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the artificial and the random distribution of SMF length and RDPS of each fiber spans consisted of the optical link. It is confirmed that the proposed link configurations should be one of the methods suitable for implementing the flexible optical transmission systems, however which depend on other link parameters, such as the averaged RDPS, and the launch power.

Capacity Evaluation of Composite Beams Composed of End-Reinforced Concrete and Center-Steel (단부 RC조 중앙부 S조로 이루어진 합성보의 내력 평가)

  • Lee, Seung Jo;Park, Jung Min;Kim, Ki Wook;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.151-159
    • /
    • 2005
  • This study investigated the capacity evaluation of composite beam of the end-reinforced concrete, the center steel with attached main-bar of stud-bolt welting and flange with main parameter, such as shear span depth ratio (a/d=1.5, 2.5, 3.5), reinforcing method, reinforcing length, and steel main-bar ratio. The test results are summarized as follows: As the RC section becomes longer, the capacity ratio of Vsrc, test/Vsrc, the gradually decreased, with the tendency of decrease being remarkably more than a/d=3.5. The reinforcing method showed superior result both vertically and horizontally. And, capacity increase ratio displayed tendency that main-bar fixing length is obvious in 0.15L, and underestimate experimental value usually in Vsrc, Eq(3)~(5) equation. The capacity estimation was proposed equation by regression analysis with change of shear span depth ratio and main-bar fixing, steel main-bar ratio.

Optimum Design of PSC Box Girder Bridge considering the Influence of Unequal Span Length Division, Load Factor, and Variable Girder Depth (부등 경간 비율, 하중계수 및 변단면의 영향을 고려한 PSC 박스 거더교의 최적설계)

  • 박문호;김기욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2004
  • This research automatically designed psc-box girder bridges by using an optimum design program and applied the results to the various types of bridges to verify if common facts used in steel bridges or concrete bridges can be applied to PSC bridges. Namely, it investigated appropriate unequal span length division by comparing with bridge of unequal and equal span length division, and verified the influence of the load factors which are changed by time or specification applying the results to various types of bridge. and it applied reinforced concrete bridge and steel bridge's variable girder depth which is slender and effective to save material costs to PSC box girder bridges. Technical solution of optimum design program used SUMT procedure, and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used for searching design points and a gradient's approximate method was used to reduce the design time.

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF

Over-Strength of Low-Rise RC Frame in Low Seismic Zone (약지진동 지역의 저층 RC 골조의 초과강도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.9-18
    • /
    • 1999
  • The seismic over-strength factor Ω is evaluated for 4-story reinforced concrete buildings in Korea, which has low seismic intensity. For this study, the seismic load suggested in' Aseismic guideline research- phase ll' (in Korea) is used. When 3D study-models are designed, span length and bay number are varied and accidental torsional moment is considered. And the models are analyzed by push-over analysis, in which external and internal frame are connected by rigid-link. As a result of numerical experiments, Ω is increased as the bay number or span length is increased. Because, by the including of accidental torsional moment in designing process, the increased ratio of strength of external columns is larger than the increased ratio of span length or bay number. And this makes the failure mode of model closer or strong-column and weak-beam mechanism.

  • PDF

Influence of Chromosome Number on Cell Growth and Cell Aging in Yeast (효모에서 염색체의 수가 세포성장과 노화에 미치는 영향)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.646-650
    • /
    • 2016
  • The influence of chromosome number on cell growth and cell aging was investigated in various yeast strains that have many artificial chromosomes constructed using a chromosome manipulation technique. Host strain FY833 and the YKY18, YKY18R, YKY24, and YKY30 strains harboring 16 natural chromosomes, 18 chromosomes, 18 chromosomes containing rDNA chromosome, 24 chromosomes, and 30 chromosomes, respectively, were used, and the specific growth rate of each strain was compared. The specific growth rates in the YKY18 and YKY24 strains were indistinguishable from that in the host strain, while those of the YKY18R and YKY30 strains were reduced to approximately 25% and 40% of the host strain level, respectively. Subsequently, the replicative life span was examined to investigate the relationship between the number of chromosomes and cell aging, and the life span was decreased to approximately 14% and 45% of the host strain level in the YKY24 and YKY30 strains, respectively. Moreover, telomere length, well known as a senescence factor, was shorter and more diversified in the strain, showing decreased life span. Therefore, these results suggest the possibility that an increase in the number of chromosomes containing artificial chromosomes caused cell aging, and we expected these observations would be applied to improve industrial strain harboring of versatile and special artificial chromosomes.

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

Compensation for the Distorted WDM Channels in the Long-Haul Transmission Link with the Randomly Distributed SMF Lengths and RDPS (SMF 길이와 RDPS가 랜덤하게 분포하는 장거리 전송 링크에서의 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul ($50\;fiber\;spans{\times}80km$) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated. It is confirmed that the compensation effect in the link with the randomly distributed SMF length and RDPS is similar with that in the link with the uniform distribution, when the launch power of WDM channels are restricted within 0 dBm. This result means that the proposed link configuration is useful for designing and deploying the long-haul WDM transmission link.

Enzymatic and mechanical treatment on chemical pulp

  • Yung, B.S.;Shin, Yoon-Chul;Jeon, Yang
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.172-177
    • /
    • 1999
  • Effect of fiber treatment with cellulase (Liftase A40), and with two refining methods (Valley beating and impact refining) on wood fiber and handsheet properties were investigated at three refining levels (300, 400, and 500ml) for two furnishes (NBKP and LBKP). Part of the treated furnishes were classified by 150 mesh screen into fine-free fiber, and fines. Fiber length analysis, WRV, zero-span strength, and other handsheet mechanical properties were compared. The study showed that Liftase A40 lowered the zero-span and the folding endurance of both furnishes (NBKP much more and LBKP much less). Pretreatment with Liftase A 40 followed by refining significantly lowered the fiber length and refining energy to reach to the target freeness. Impact refining, which is done by hitting the fibers vertically with rod at 20% solid content, kept the fiber length increased WRV, and improved handsheet mechanical properties much more than valley beating. Properties of fines from different sources were compared in detail in the study.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.