Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.6.646

Influence of Chromosome Number on Cell Growth and Cell Aging in Yeast  

Kim, Yeon-Hee (Department of Biotechnology and Bioengineering, Dong-Eui University)
Publication Information
Journal of Life Science / v.26, no.6, 2016 , pp. 646-650 More about this Journal
Abstract
The influence of chromosome number on cell growth and cell aging was investigated in various yeast strains that have many artificial chromosomes constructed using a chromosome manipulation technique. Host strain FY833 and the YKY18, YKY18R, YKY24, and YKY30 strains harboring 16 natural chromosomes, 18 chromosomes, 18 chromosomes containing rDNA chromosome, 24 chromosomes, and 30 chromosomes, respectively, were used, and the specific growth rate of each strain was compared. The specific growth rates in the YKY18 and YKY24 strains were indistinguishable from that in the host strain, while those of the YKY18R and YKY30 strains were reduced to approximately 25% and 40% of the host strain level, respectively. Subsequently, the replicative life span was examined to investigate the relationship between the number of chromosomes and cell aging, and the life span was decreased to approximately 14% and 45% of the host strain level in the YKY24 and YKY30 strains, respectively. Moreover, telomere length, well known as a senescence factor, was shorter and more diversified in the strain, showing decreased life span. Therefore, these results suggest the possibility that an increase in the number of chromosomes containing artificial chromosomes caused cell aging, and we expected these observations would be applied to improve industrial strain harboring of versatile and special artificial chromosomes.
Keywords
Artificial chromosome; cell growth rate; life span; telomere length; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, A. H., Sugiyama, M., Harashima, S. and Kim, Y. H. 2012. Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J. Microbiol. Biotechnol. 22, 184-189.   DOI
2 Piper, P. W. 2006. Long-lived yeast as a model for ageing research. Yeast 23, 215-226.   DOI
3 Sinclair, D. A. and Guarente, L. 1997. Extrachromosomal rDNA circles-A cause of aging in yeast. Cell 91, 1033-1042.   DOI
4 Winston, F., Dollard, C. and Ricupero-Hovasse, S. L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53-55.   DOI
5 Gillespie, C. S., Proctor, C. J., Boys, R. J., Shanley, D. P., Wilkinson, D. J. and Kirkwood, T. B. 2004. A mathematical model of ageing in yeast. J. Theor. Biol. 229, 189-196.   DOI
6 Jazwinski, S. M. 1999. Longevity, genes, and aging: A view provided by a genetic model system. Exp. Gerontol. 34, 1-6.   DOI
7 Kaeberlein, M. 2006. Longevity and aging in the budding yeast. In: Conn PM, editor. Handbook of models for human aging. Boston: Elvesier Press pp. 109-120.
8 Kim, Y. H., Ishikawa, D., Ha, H. P., Sugiyama, M., Kaneko, Y. and Harashima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res. 34, 2914-2924.   DOI
9 Louis, E. J. and Haber, J. E. 1992. The structure and evolution of subtelomeric Y’ repeats in Saccharomyces cerevisiae. Genetics 131, 559-574.
10 Masoro, E. J. 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913-922.   DOI
11 Sugiyama, M., Ikushima, S., Nakazawa, T., Kaneko, Y. and Harashima, S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38, 909-914.   DOI
12 Melov, S., Ravenscroft, J., Malik, S., Gill, M. S., Walker, D. W., Clayton, P. E., Wallace, D. C., Malfroy, B., Doctrow, S. R. and Lithgow, G. J. 2000. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567-1569.   DOI
13 Mortimer, R. K. and Johnston, J. R. 1959. Life span of individual yeast cells. Nature 183, 1751-1752.   DOI
14 Park, A. H. and Kim, Y. H. 2013. Breeding of ethanol producing and tolerant Saccharomyces cerevisiae by using genome shuffling. J. Life Sci. 23, 1192-1198.   DOI
15 Egilmez, N. K. and Jazwinski, S. M. 1989. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J. Bacteriol. 1, 37-42.
16 Banerjee, S. and Myung, K. 2004. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase check-points. Eukaryot. Cell 3, 1557-1566.   DOI
17 Bitterman, K. J., Medvedik, O. and Sinclair, D. A. 2003. Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiol. Mol. Biol. Rev. 67, 376-399.   DOI
18 Burke, D., Dawson, D. and Stearns, T. 2000. Methods in yeast genetics, pp. 110-111, A Cold Spring Harbor Laboratory Course Manual. A Cold Spring Harbor Laboratory, Cold Spring Harbor. New York.
19 Kennedy, B. K., Austriaco, N. R. Jr. and Guarente, L. 1994. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985-1993.   DOI
20 Burke, D. T., Carle, G. F. and Olson, M. V. 1987. Cloning of large segments of DNA into yeast by means of artificial chromosome vectors. Science 236, 806-812.   DOI