• 제목/요약/키워드: Spade 타

검색결과 17건 처리시간 0.023초

함정용 방향타에서 발생하는 구름(cloud) 캐비테이션의 주파수 특성에 대한 실험적 연구 (An Experimental Study on the Frequency Characteristics of Cloud Cavitation on Naval Ship Rudder)

  • 백부근;안종우;정홍석;설한신;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.167-174
    • /
    • 2021
  • In this study, the amount and frequency characteristics of cloud cavitation formed on a navy ship rudder were investigated through cavitation image processing technique and cavitation noise analysis. A high-speed camera with high time resolution was used to observe the cavitation on a full-spade rudder. The deflection angle range of the full-spade rudder was set to 8 to 15 degrees so that cloud cavitation was generated on the rudder surface. For images taken at 104 fps (frame per second), reference values for detecting cavitation were defined and detected in Red, Green, Blue and Hue, Saturation, Lightness color spaces to quantitatively analyze the amount of cavitation. Intrinsic frequency characteristics of cloud cavitation were detected from the time series data of the amount of cavitation. The frequency characteristics of cloud cavitation obtained by using the image processing technique were found to be the same through the analysis of the noise signal measured by the hydrophone installed on the hull above the rudder, and its peak value was in the frequency band of 30~60Hz.

타 간극 캐비테이션과 저감장치에 관한 2 차원 모형 실험 (Two-dimensional Model Tests for Rudder Gap Cavitation and Suppression Devices)

  • 이창민;오정근;이신형
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.122-131
    • /
    • 2010
  • The increasing size and speed of cargo ships result in high speed flow in propeller slipstream, and thereby cavitation is frequently observed on and around a rudder system. Rudder gap cavitation is the most difficult one to control and suppress among various types of the cavitation on a rudder system. In the present study, experiments of the incipient cavitation and pressure measurement were carried out for typical cargo ship rudder sections with and without the suppression devices, which were suggested by the authors. Fundamental understanding of the rudder gap cavitation inception was obtained along with its relevance to the surface pressure distribution. It is confirmed that the gap flow blocking devices effectively suppress the rudder gap cavitation and, at the same time, augment lift.

KVLCC2의 자항성능 개선을 위한 Post-Device 최적화 연구 (Study on Optimization of Post-Device for Self-Propulsion Performance Improvement of KVLCC2)

  • 김현웅;김문찬;강진구;윤택근
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.381-387
    • /
    • 2020
  • According to the increase of concern for environmental problems, the energy saving becomes an important issue because it is one of the most effective methods of decreasing CO2 which is major environmental problem. In the present study, the post device after propeller related with rudder has been focussed. Recently the full-spade twisted rudder has been frequently used not only to increase the efficiency but also to remove the cavitation risk on leading edge. In addition to that the rudder bulb is also applied to the rudder to increase the propulsion efficiency as well as to minimize the cavitation erosion risk around twisting part. The parametric study has been conducted for investigating the optimum configuration of twisting rudder with bulb by CFD. The present optimization has been applied to the KVLCC2 full-body ship. The verification of the computed results is also expected to be conducted by the comparison with experimental results in the near future.

프로펠러 회전류에서 작동하는 방향타의 받음각 특성 연구 (Study on the Angle-of-Attack Characteristics of the Rudder in Rotating Propeller Flow)

  • 정재환;백동근;윤현식;김기섭;백부근
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.421-428
    • /
    • 2013
  • This study aims at numerically investigating the angle of attack characteristics of the rudder behind a rotating propeller. The rotating propeller of 5 blades and the full spade rudder are placed in the numerical water tunnel with a uniform flow condition to consider propeller-rudder interaction. The turbulence closure model is employed to simulate the three-dimensional unsteady incompressible viscous turbulent flow around the propeller and the rudder. The present numerical method are well verified by comparing with the experimental results. In order to identify the dependence of the angle of attack of the rudder on the rudder angle, a wide range of rudder angles is considered. The present study carried out the quantitative and qualitative analysis of the angle of attack in terms of the pressure distribution, streamlines and the evaluation of the flow incidence, resulting in that the angle of attack increases as we move from the root and the tip to the center of the rudder, regardless of the rudder angle. The distribution of the angle-of-attack along the span is strongly affected by rotating propeller flow and rudder angle. Consequently, the distribution of the angle-of-attack of the oncoming flow against the rudder leading edge plays a role in determination of rudder performance.

Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구 (A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack)

  • 태현준;신용진;김범준;김문찬
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구 (Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder)

  • 백부근;안종우;박영하;;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

선체반류 중에서 작동하는 프로펠러에 의한 방향타 유입유동 PIV 계측 (PIV Measurements of Rudder Inflow Induced by Propeller Revolution in Hull Wake)

  • 백부근;김기섭;김경열;김건도;박영하
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.128-133
    • /
    • 2011
  • In the present study, the flow fields in between the propeller and the semi-spade rudder are investigated by using PIV technique to find out the influences of both simulated hull wake and propeller wake on the incident flow to the rudder. The velocity fields are measured at the propeller rotation angle of $180^{\circ}$ and the rudder deflection angles of $0^{\circ}$. Flow fields measured at each rudder deflection angle are analyzed in terms of angle-of-attack against the rudder leading edge. The hull wake increases the angle-of-attack more than that in the uniform inflow condition, forming the angle-of-attack of about $20^{\circ}$ at 0.7R(R=propeller radius) position. The distribution of the angle-of-attack is strongly affected by the stagnation point around the leading edge and camber effect of the rudder. These effects provide asymmetric distribution of angle-of-attack with respect to the leading edge of the rudder.