• Title/Summary/Keyword: Spacing rate

Search Result 349, Processing Time 0.026 seconds

DETECTOR SIMULATIONS FOR THE COREA PROJECT (COREA 프로젝트를 위한 검출기 모의실험)

  • Lee, Sung-Won;Kang, Hye-Sung
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The COREA (COsmic ray Research and Education Array in Korea) project aims to build a ground array of particle detectors distributed over Korean Peninsular, through collaborations of high school students, educators, and university researchers, in order to study the origin of ultra high energy cosmic rays. COREA array will consist of about 2000 detector stations covering several hundreds of $km^2$ area at its final configuration and detect electrons and muons in extensive air-showers triggered by high energy particles. During the intial phase COREA array will start with a small number of detector stations in Seoul area schools. In this paper, we have studied by Monte Carlo simulations how to select detector sites for optimal detection efficiency for proton triggered air-showers. We considered several model clusters with up to 30 detector stations and calculated the effective number of air-shower events that can be detected per year for each cluster. The greatest detection efficiency is achieved when the mean distance between detector stations of a cluster is comparable to the effective radius of the air-shower of a given proton energy. We find the detection efficiency of a cluster with randomly selected detector sites is comparable to that of clusters with uniform detector spacing. We also considered a hybrid cluster with 60 detector stations that combines a small cluster with ${\Delta}{\iota}{\approx}100m$ and a large cluster with ${Delta}{\iota}{\approx}1km$. We suggest that it can be an ideal configuration for the initial phase study of the COREA project, since it can measure the cosmic rays with a wide range energy, i.e., $10^{16}eV{\leq}E{\leq}10^{19}eV$, with a reasonable detection rate.

A Study on the Local Boiling of the Consolidated Spent Fuel Storage Pool (조밀화된 사용후 핵연료 저장조에서의 국부 비등에 관한 연구)

  • Lee, Chang-Ju;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-19
    • /
    • 1993
  • The natural convection model of the consolidated system has been developed to make sure the removal of decay heat generated in the spent fuel for the loss of forced cooling accident. The numerical technique employed was based on the ADI scheme. The calculation of heat generation rate in the spent fuel was peformed by the ANS-79 decay heat model, and the nonuniform surface heat flux is assumed with a chopped sine curve for the conservative decay heat generation input. The sensitivity study was performed to examine the possibility of the pool bulk boiling by varying the various parameters, i.e. inter-fuel spacing ratio, heat generation power, and radius of the fuel rod. The application results of this model show that the natural circulation flow through compacted spent fuel bundles enables the pool temperature to control in a safe and effective manner, after the required cooling time. The corresponding acceptance criteria of the cooling time for rearranging the spent fuel rods were also found.

  • PDF

Growth Stages of Maize (Zea mays, L.) (옥수수의 형태적 변화와 생장 발육 단계)

  • 박병훈;양종성;강정훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.185-191
    • /
    • 1981
  • The purpose of this paper is to define and describe a series of growth stages for maize. cv. MTC-l (early) and Suweon No. 19 (late) that are easily identifiable by both professional agronomists and farmers. Plants were grown at a density of 60cm row with plant spacing of 15cm at six different seeding times in 1980. Leaf development indices with ten grades (LDI) were identified and defined in accordance with the development of a leaf blade. Leaf appearance rate (LAR) was ca. 3 days and it was not influenced by the variety or seeding time. The elongation of the first internode above the ground level began in a month after emergence and it corresponded to the 8th or 9th leaf stage. Internodes elongated in regular sequence of node position. The morphological change of silks related closely with the development of kernel. The duration of generative development was not influenced by varieties and seeding time but that of vegetative growth was influenced. A new scheme for the maize which was made by the developed leaves, visible nodes above ground level, morphological change of silks and development of kernel was proposed.

  • PDF

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Development of Direct Metal Tooling (DMT) Process for Injection Mold Core with Curved Conformal Cooling Channel (곡선형 형상적응형 냉각채널을 갖는 금형 코어 제작을 위한 DMT 공정개발)

  • Han, Ji Su;Yu, Man Jun;Lee, Min Gyu;Lee, Yoon Sun;Kim, Woo-Sung;Lee, Ho Jin;Kim, Da Hye;Sung, Ji Hyun;Cha, Kyoung Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.103-108
    • /
    • 2019
  • The cooling rate and the uniformity of mold temperature, in the injection molding process, possess great influences on the productivity and quality of replications. The conformal cooling channel, which is of a uniform spacing from the mold cavity by the metal additive manufacturing process, receives much attention recently. The purpose of this study is to develop a mold core with a curved conformal cooling channel for a pottery-shaped thick-wall cosmetic container through the hybrid method of direct metal tooling (DMT) process. In this study, we design a mold core that contains the curved cooling channel for the container. A method that divides the cavity is proposed and the DMT process is carried out to form the curved cooling channel. The test mold core, with the curved conformal cooling channel, has been fabricated by the proposed method to confirm the feasibility of the design concept. We show that no leakage is observed for the additive manufactured test mold core, and its physical properties demonstrate that it can be sufficiently used as the injection mold core.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Compensation Characteristics Depending on Extinction Ratio of RZ Pulse in Dispersion-managed Link Combined with MSSI (MSSI와 결합된 분산 제어 링크에서 RZ 펄스의 소광비에 따른 보상 특성)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.123-128
    • /
    • 2024
  • When mid-span spectral inversion (MSSI), which inverts the propagated wave into phase-conjugated wave in the middle of the entire transmission distance, is combined with dispersion-managed link, it is very effective in compensating for the wavelength division multiplexed (WDM) signal distortion due to chromatic dispersion and nonlinear effects. In this MSSI combined dispersion-managed link, the shape of the dispersion map, channel data rate, channel wavelength and wavelength spacing, etc. affect the compensation and, consequently, determine the transmission distance and capacity of the WDM signal. In this paper, the compensation according to the extinction ratio of the return-to-zero (RZ) pulse that constitutes the WDM signal in the MSSI combined distributed control link was numerically analyzed. As a result of the simulation, it was conformed that the extinction ratio to obtain the best compensation should be determined depending on the shape of the dispersion map and the size of the residual dispersion per span, which determines the specific shape of the dispersion map. These results show a significant difference from the results in a general optical transmission system, where as the extinction ratio increases, the power difference between the '1' and '0' signals increases, thereby improving reception performance.

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.