• Title/Summary/Keyword: Spacing rate

Search Result 349, Processing Time 0.023 seconds

A Study of Fabrication of RF Control System for Building Sunshade (건물 차양을 위한 RF제어 시스템 제작에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.149-157
    • /
    • 2014
  • This paper is based on the fabrication of wireless control system for the building shading device. RF Module was controlled by UHF wireless CC1020 chip which has low electrical power and low electrical voltage. Also 447.8625~447.9875 frequency, 4800Baud data rate and 12.5 kHz channel spacing was controlled by the use of SPDT switch and with Microcontroller program. Furthermore, the helical antenna was used. The starting production of 447.8625~447.9875 kHz wireless electrical power was used. As the result, it did not exceed 10dBm which is the standard of low power wireless system. Shading efficiency was measured at 25%, 50%, 75% direction with controlling the interior temperature and the intensity of illumination at the rate of 1 hour. As the result, the intensity of illumination was lowered to 82~87% at 25% direction with $0.6{\sim}1.4^{\circ}C$ lowered temperature. At 50% direction, the intensity of illumination was lowered to 60~68% with $2.3{\sim}4.1^{\circ}C$ lowered temperature. And at 75% direction, the intensity of illumination was lowered to 41~47% with $3.4{\sim}5.1^{\circ}C$ lowered temperature.

Optimization of Bioreactor Operation by Mass Transfer Coefficient (물질전달계수를 이용한 생물 반응기 운전 최적화)

  • Kim, Hyung-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The effects of various operating parameters(agitation speed, impeller type, antiform agents, impeller spacing etc.) on air-liquid mass transfer was characterized by volumetric mass transfer coefficient($k_La$). Also, the dual-impeller agitated systems are compared with single-impeller agitated systems with a special focus on its applications for bioreactors, $k_La$ was take over a range of 200~450 rpm of agitation speed, and 0.5~2.5 vvm of air flow rates, for four single impeller and impeller combinations consisting of four impeller types, namely rushton, pitched blade, scaba, intermig were tested. The rushton impeller showed the best $k_La$ as compared with other single impellers. The dual impeller system are found to be superior as compared to single impeller in all aspects, The best combination of the dual impeller was a intermig of axial flow type as an upper impeller and a rushton of radial flow type as a lower part. Also, the control of the DO level with the variation of agitation speed was more efficient than that with an increase in air flow rate. The addition of antiform dropped the $k_La$ very large up to 1g/L regardless the type. PPG was less effect on $k_La$ than other antiforms. The impeller spacing and presence of solute are found very effective on $k_La$. When the $NaNO_3$is presented as solute, the $k_La$ increased approximately 50% then control.

  • PDF

Impingement heat transfer within 1 row of circular water jets: Part 2-Effects of nozzle to heated surface distance (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제2보, 노즐-전열면간 거리의 영향))

  • 엄기찬;이종수;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In a previous paper, we have examined the effects of nozzle configuration and jet to jet spacing on the heat transfer of 1 row of circular water jets. In this paper, experiments have been conducted to obtain the effects of nozzle to target plate distances on the heat transfer of 1 row of 3 jets and 1 row of 5 jets. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type. Nozzle to target plate distance H was varied from 16 mm(H/D=2) to 80mm(H/D=10). For fixed value of mass flow rate and nozzle to target plate distance, larger values of average Nusselt number were obtained for the smaller jet to jet spacing. For the array of water jets, the average heat transfer was decreased slightly with increasing nozzle to target plate distance at low jet velocity of $\textrm{V}_{o}$=3 m/s. However, except for $\textrm{V}_{o}$=8 m/s of 1 row of 5 jets, it was increased with increasing nozzle to target plate distance at high jet velocity of $\textrm{V}_{o}$$\geq$6m/s. We proposed to apply the nozzle configuration of maximum average heat transfer to each nozzle to target plate distance for 1 row of 3 jets, and, it was Reverse cone type nozzle for 1 row of 5 jets(Reynolds number$\geq$36000).

  • PDF

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Effect of droplet length on a burning constant rate of suspended droplet (액적간격이 고정액적의 연소율상수에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presents the results of an experimental investigation on the combustion of single droplets and 1-D droplet arrays of jet A-1 fuel droplets in atmospheric pressure. Experimental results indicate that burning rate constants$({\kappa}_c)$ of jet A-1 fuel droplets were independent of initial droplet size as $0.915{mm}^2$/sec. It was acquired a general relationship expressing the variation of $d^2$ with time for droplet burning For 1-D droplet arrays $(l/d_o$=1.208{\sim}2.922)$/TEX>, the burning rate constant ${\kappa}_c$ decreased with decreasing droplet spacing $l/d_o$ and, The effect on combustion rate constant ${\kappa}_c$ was stronger to second fuel droplet than third fuel droplet with uniform droplet distance

Effect of Austenitizing Temperature and Cooling Rate on Microstructure and Hardness of Low-carbon SCM415 Steel (오스테나이타이징 온도와 냉각 속도가 SCM415 저탄소강의 미세조직과 경도에 미치는 영향)

  • Lee, J.U.;Lee, G.M.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • In this study, variations in the microstructure and hardness of a low-carbon SCM415 steel with austenitizing temperature and cooling rate are investigated. When the austenitizing temperature is lower than the A1 temperature (738.8 ℃) of the SCM415 steel, the microstructures of both the air-cooled and water-cooled specimens consist of ferrite and pearlite, which are similar to the microstructure of the initial specimen. When heat treatment is conducted at temperatures ranging from the A1 temperature to the A3 temperature (822.4 ℃), the microstructure of the specimen changes depending on the temperature and cooling rate. The specimens air- and water-cooled from 750 ℃ consist of ferrite and pearlite, whereas the specimen water-cooled from 800 ℃ consists of ferrite and martensite. At a temperature higher than the A3 temperature, the air-cooled specimens consist of ferrite and pearlite, whereas the water-cooled specimens consist of martensite. At 650 ℃ and 700 ℃, which are lower than the A1 temperature, the hardness decreases irrespective of the cooling rate due to the ferrite coarsening and pearlite spheroidization. At 750 ℃ or higher, the air-cooled specimens have smaller grain sizes than the initial specimen, but they have lower hardness than the initial specimen owing to the increased interlamellar spacing of pearlite. At 800 ℃ or higher, martensitic transformation occurs during water cooling, which results in a significant increase in hardness. The specimens water-cooled from 850 ℃ and 950 ℃ have a complete martensite structure, and the specimen water-cooled from 850 ℃ has a higher hardness than that water-cooled from 950 ℃ because of the smaller size of prior austenite grains.

An Experimental Study on Flexural Strength of Deep Corrugated Steel Plate Composite Members by Steel Grade and Reinforcement Method (강종 및 보강방법에 따른 대골형 파형강판 합성부재의 휨성능에 관한 실험적 연구)

  • Kim, Yongjae;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.1-12
    • /
    • 2017
  • In this study, It was purpose to provide preliminary data for extension of the applicability of deep corrugated steel plate composite members by steel grade and shear reinforcement method. From the result of flexural test on deep corrugated plates composite members using GR40 and SS590, positive moment capacity was increased about 28% by SS590 steel. But to change steel grade was proved to have insignificant effects for increasement of negative moment capacity. In the moment test result of same overlapping length, Increasement rate of positive and negative moment capacity was not significantly improved by increasing the number of bolt. It was estimated to be due to the characteristics of bolt connection such as distance between centers of bolts, edge distance of bolt. In the test result on the spacing of shear reinforcement, positive moment capacity was increased and deformation of negative moment was reduced as the distance decrease. In the test result on the shape of shear reinforcement, positive and negative moment resistance was increased about 2% ~ 7% by U shaped shear reinforcement. In conclusion It was estimated that moment capacity of deep corrugated steel plate composite members are depend on steel grade of deep corrugated steel plate, spacing of shear reinforcement and reinforcing bar.

A Study on Bearing Capacity for Installed Rammed Aggregate Pier (RAP의 배치형태에 따른 지지력에 관한 연구)

  • Kim, Younghun;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2009
  • Rammed Aggregate Pier (RAP) method is intermediate foundation between deep and shallow foundation, and it has been built in world wide. RAP represents a relatively new method that has grown steadily over 19 years since Geopier of USA developed this revolutionary method in 1989. The investigation and research in domestic is not accomplished. In this paper, the examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from changing the spacing of piles, namely installed rammed aggregate pier. Laboratory model test was administered in a sand box. Strain control test was conducted to determine the bearing capacities of the piers; 20 mm, 30 mm and 40 mm RAP in diameter using drilling equipment to make holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, as the space between each piers was closed, the settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, it allows greater chances to have more resistance to deformation, and shows more improved stability of structures. After from the verification work which is continuous leads the accumulation of the site measuring data which is various, and bearing capacity and the settlement is a plan where the research will be advanced for optimum installed RAP.

  • PDF

A Study on the Speed Change on the Arterial Road according to Traffic Volume and Speed Limit (교통량과 제한속도에 따른 간선도로 속도 변화에 관한 연구)

  • Shin, Eon-kyo;Kim, Ju-hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.149-161
    • /
    • 2022
  • Because the speed limit affects moving speed, it is closely related to traffic accidents as well as traffic flow. The existing speed limit calculation methods consider various engineering factors such as lanes, intersection spacing, driveways, crosswalks, 85 percentile speed, land uses, and roadway geometric characteristics etc. However, it can be said that the engineering analysis is insufficient because the traffic impact analysis considering traffic volume is not carried out. In addition, only 85 percentile speed, which is the spot speed, does not reflect the characteristics of the traffic flow on the road. In this paper, the effect of the speed limit change on the moving speed and the travel speed was analyzed in detail accordinr to the variation of intersection spacing and traffic volume. And by using the results, we proposed a speed limit calculation method that maintains the same service level as before the speed limit change, thereby increasing the speed improvement effect and reducing the difference between moving speed and travel speed. In addition, a variable speed limit operation method according to the change in traffic volume was also suggested. This method is expected to be effective in terms of safety by reducing the speed difference, which affects the severity of traffic accidents, while securing the speed improvement effect, and increasing the speed limit compliance rate of drivers by operating the speed limit that reflects the speed change due to the variation of traffic volume.