• 제목/요약/키워드: Spacecraft dynamics

검색결과 108건 처리시간 0.033초

Kalman Filtering for Spacecraft Attitude Estimation by Low-Cost Sensors

  • Lee, Henzeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.147-161
    • /
    • 2008
  • In this paper, fine attitude estimation using low-cost sensors for attitude pointing missions of spacecraft is addressed. Attitude kinematics and gyro models including bias models are in general utilized to estimate spacecraft attitude and angular rate. However, a linearized model and a transition matrix are derived in this paper from nonlinear spacecraft dynamics with external disturbances. A Kalman filtering technique is applied and offers relatively high estimation accuracy under dynamic uncertainties. The proposed approach is demonstrated using numerical simulations.

Mechanical architecture and loads definition for the design and testing of the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.225-242
    • /
    • 2016
  • Euclid is an astronomy and astrophysics space mission of the European Space Agency. The mission aims to understand why the expansion of the Universe is accelerating and what is the nature of the source responsible for this acceleration which physicists refer to as dark energy. This paper provides both an overview of the spacecraft mechanical architecture and a synthesis of the process applied to establish adequate mechanical loads for design and testing. Basic methodologies and procedures, logics and criteria which have been used with the target to meet a compliant, "optimised" design are illustrated. The strategy implemented to limit the risk for overdesign and over-testing without jeopardizing the design margins is also addressed.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Dynamics and control of a large spacecraft with flexible appendages in gravitational field

  • Nohmi, Masahiro;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.368-371
    • /
    • 1995
  • This paper describes dynamic analysis and attitude control of a large spacecraft with flexible appendages in gravitational field. The effect of attitude control and vibration control of flexible appendages in gravitational field has been clarified. We demonstrate some simulations in gravitational field for some cases, and suggest the effects of gravitational torque, parameters of flexible appendages, attitude control and vibration control of flexible appendages.

  • PDF

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Static and dynamic load superposition in spacecraft structural analysis

  • Vaquer-Araujo, Xavier;Schottle, Florian;Kommer, Andreas;Konrad, Werner
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.259-275
    • /
    • 2018
  • In mechanical analysis of spacecraft structures situations appear where static and dynamic loads must be considered simultaneously. This could be necessary either by load definition or preloaded structures. The superposition of these environments has an impact on the load and stress distribution of the analysed structures. However, this superposition cannot be done by adding both load contributions directly. As an example, to compute equivalent Von Mises stresses, the phase information must be taken into account in the stress tensor superposition. Finite Element based frequency response solvers do not allow the calculation of superposed static and dynamic responses. A manual combination of loads in a post-processing task is required. In this paper, procedures for static and harmonic loads superposition are presented and supported by analytical and finite element-based examples. The aim of the paper is to provide evidence of the risks of using different superposition techniques. Real application examples such as preloaded mechanism structures and propulsion system tubing assemblies are provided. This study has been performed by the Structural Engineering department of Airbus Defence and Space GmbH Friedrichshafen.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

인공위성 태양전지판 전개해석 (Solar Array Deployment Analysis of a Satellite)

  • 김경원;김선원;임재혁;이주훈;황도순;진익민;김학정;송운형;최항석
    • 한국위성정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2008
  • 발사체로부터 분리된 위성체가 궤도상에 진입하면 가장 먼저 태양전지판을 전개한다. 태양전지판의 전개유무는 위성 임무의 성공에 관련되어 있는 매우 중요한 요소 중 하나이다. 따라서, 설계 초기 단계에서부터 태양전지판 전개해석을 통하여 태양전지판의 거동을 예측하고, 전개 중 태양전지판 주요 부위에서의 하중을 계산하여, 태양전지판 전개안전성을 점검하는 것이 반드시 필요하다. 본 논문에서는 다몸체동역학 해석프로그램을 이용하여 차세대 저궤도 위성의 태양전지판 전개해석을 수행하고, 그 결과로부터 태양전지판 전개시 안정성을 분석하였다. 또한, 전개해석시 필요한 힌지 특성 데이터는 힌지 특성 시험을 수행하여 구하였으며, 이의 결과를 전개해석에 반영하여 해석을 수행하였다.

  • PDF