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Abstract

Nonlinear sliding surface design in variable structure systems for spacecraft attitude
control problems is studied. A robustness analysis is performed for regular form of
system, and calculation of actuator bandwidth is presented by reviewing sliding sur-
face dynamics. To achieve non-singular attitude description and minimal parameter-
ization, spacecraft attitude control problems are considered based on modified Ro-
drigues parameters (MRP). It is shown that the derived controller ensures the sliding
motion in pre-determined region irrespective of unmodeled effects and disturbances.

Keywords: variable structure control, sliding surface, nonlinear control, modified Rodrigues
parameters

1. Introduction

The control of large-angle spacecraft maneuvers generally poses highly nonlinear characteris-
tics, which govern dynamic equations, control rate saturation and its limits, and incomplete state
knowledge due to sensor measurement noise or failure. The use of variable structure control for
attitude maneuvers has been proposed for the adequate treatment of such problems. An optimal con-
trol approach for the sliding surface synthesis problem using quaternions was presented by Vadali
(Vadali 1986). Differential geometric approach to single-axis maneuver using Cayley-Rodrigues
attitude parameter was formulated by Sira-Ramirez and Dwyer (Dwyer & Ramirez 1988, Ramirez
1988). Nonlinear optimal control theory and feedback linearization methods also have been applied
to the spacecraft maneuver problem (Dwyer 1984, Damaren & D’Eleuterio 1989).

In this paper, variable structure control for spacecraft attitude maneuvers is considered. The
robustness analysis is taken for nonlinear system with parameter variations and disturbances, and
the analysis result is applied to regular form of variable structure systems(VSS). Chattering is one
of main topics on VSS and a constraint of control signal bandwidth. By studying sliding surface
dynamics, calculation of actuator bandwidth is present in the function of control gain factors. To
take advantage of the modified Rodrigues parameters:

(1) minimal parameterization of attitude representation,
(2) singularity avoidance of rotations
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a sliding mode controller is derived based on MRP.
It is shown that the derived sliding mode controller ensuresbound-layer reachability(Dwyer &

Ramirez 1988) irrespective of unmodeled effects and disturbances.

2. Theoretical Background

In this section, a review of the variable structure control and dynamic equations of motions for
a three-axis stabilized spacecraft is presented.

2.1 Equations of Motion
The attitude of spacecraft is assumed to be presented by quaternions. The quaternion represen-

tation is defined as

β0 = cos
Φ
2

, βi = ei sin
Φ
2

, i = 1, 2, 3 (1)

whereei is a unit vector corresponding to the axis of rotation andΦ is the angle of rotation. For min-
imal parameterization of attitude, we use modified Rodrigues parameters(MRP). The transformation
from quaternions to the MRP vectorσ is given by (Schaub 1998, Shuster 1993)

σi =
βi

β0 + 1
, i = 1, 2, 3 (2)

Using Eq. (1), the modified Rodrigues parameters are written as

σ = tan
Φ
4

ê (3)

Studying Eq. (3) it is evident that the MRP have a geometric singularity atΦ = ±360 degrees.
But the non-uniqueness of the MRP allows one to avoid their singularities (Schaub 1998). The
MRP kinematic differential equation in vector form by using the spacecraft’s body angular velocity
vector(ω), is

σ̇ =
1
4

[
(1− σ2)I + 2[σ̃] + 2σσT

]
ω = B(σ)ω (4)

where the notationσ2 = (σT σ) is used, andI is the 3×3 identity matrix. The tilde matrix operator
[σ̃] is defined as

[σ̃] =




0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0


 (5)

The inverse transformation of B(σ) in Eq. (4) is in explicit vector form (Schaub 1998)

B−1(σ) =
4

(1 + σ2)2
[
(1− σ2)I − 2[σ̃] + σσT

]
(6)

Let J be the rigid body inertia matrix andu be control torque vector. Euler’s rotational equations of
motions for a rigid body are given by

ω̇ = f(ω) + J−1u (7)

where
f(ω) = J−1[J̃ω]ω (8)
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2.2 Variable Structure Control
The system presented as

ẋ1 = f1(x1, x2), (9)

ẋ2 = f2(x1, x2) + G(x1, x2)u (10)

is referred to as a regular form in VSC literature, wherex1 ∈ Rn, x2 ∈ Rm, u ∈ Rm, andG is
m×m matrix. It is possible to specify the sliding manifolds= 0 as (Utkin 1992)

s = x2 − s0(x1) = 0 (11)

wheres0(x1) is the solution of equation s=0 regarding tox2. The equation of motion along the
manifold s=0 in Eq. (11), orx2 = s0(x1) will be of the form

ẋ1 = f1(x1, s0(x1)) (12)

As a result, we face a design problem for the system with an m–dimensional controls0(x1)
rather than (m+n)–dimensional control. Now we consider the disturbance and uncertainty to see the
robustness characteristic of VSC. We consider the system with disturbance and uncertainty as the
following:

ẋ = f + ∆f + (G + ∆G)u(t) + d(t) (13)

wherex ∈ Rm, andf, ∆f,G, ∆G depend onx andf and∆f are nonlinear driving term and their
uncertainties,G and∆G are the control gain and its uncertainty, andd(t) andu(t) represent external
disturbance and control signals. Futhermore∆f, ∆G andd are assumed to be bounded by known,
continuous functions, i.e.

|∆f | 5 F (x, t)
|∆G| 5 Γ(x, t)
|d| 5 D(x, t)



 (14)

The attractivity of the sliding surface is assured by enforcing thesliding mode existence condition,
which for a single input case are given by the following relations:

lim
s−→0+

d

dt
s < 0

lim
s−→0−

d

dt
s > 0 (15)

For general vector–valued situations conditions, Eq. (15) is replaced by the Lyapunov-type con-
dition below:

d

dt
||s||2 = 2sT ds

dt
< 0 (16)

This can be guaranteed by a control law which forces the system to comply the condition. In
this paper the following form ofds/dt , which satisfies thesliding mode existence condition, is con-
sidered:

ds

dt
≡ ṡ = −Ps−Ksign(s) (17)

whereP > 0 andK > 0. P andK assure the two conditions for sliding.P is effective for larges,
andK is dominant for smalls. Due to uncertainties, Eq. (17) needs to be modified to

ṡ = −Ps−Ksign(s) + ∆f + d + ∆Gu (18)
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The following selection is sufficient to ensure Eq. (16):

K = F + Γ|u|+ D >= |∆f + d + ∆Gu| (19)

From the relation Eq. (19), K is disturbance control factor.

3. Controller Design

In this section a sliding mode controller is derived. The measurement of both the spacecraft
attitude and angular rate are assumed to be available. The nonlinear model for spacecraft motion can
be characterized by Eq. (4) and Eq. (7) and is of regular form as Eq. (9), (10) withx1 = σ, x2 = ω
andG = J−1.

The sliding surface is defined as Eq. (11) withs0(σ) = B−1(σ)ρ(σ).

s = ω − s0(σ)
= ω −B−1(σ)ρ(σ) (20)

Theρ(σ) determines the desired form of evolutionσ, given by

ρ(σ) = Π(σ − σd) (21)

whereσd is the desired final value of the attitude parameter, andΠ is a diagonal matrix with negative
elements. The dynamics for the attitude parameter would be a system with exponential rate of decay.
So diagonal elements inΠ can be thought of time constant in attitude parameter dynamics. Con-
sidering Eq. (16), the sliding mode controller which satisfies thesliding mode existence conditionof
Eq. (16) is obtained by (Dwyer & Ramirez 1988)

u = −J

{
f(ω)− ∂s0

∂σ
[B(σ)s0(σ) + B(σ)s] + Ps + Ksat(s, ε)

}
(22)

The saturation function,sat(s, ε) used to reduce chattering in the control torques, is defined by

sat(si, ε) =
{

sign(si) if |si| > ε
si

ε if |si| 5 ε
i = 1, 2, 3 (23)

whereε > 0 is the“boundary layer thickness.”

3.1 Regulation Problem
The regulation problem requires that the final attitude of spacecraft be zero, i.e. the desired

evolution of attitude parametersσd = 0 in Eq. (21). To simplify the problem, we assume thatΠ
matrix in Eq. (21) is as form ofΠ = γI with scalar valueγ, which yieldss0(σ) to

s0(σ) = 4γ(1 + σ2)−2
{
(1− σ2)I − 2[σ̃] + 2σσT

}
σ (24)

which can be further simplified using the[σ̃]σ = 0 and the identity[σ̃]2 = σσT − σ2I to

s0(σ) = 4γ(1 + σ2)−1σ (25)

The partial derivative∂s0/∂σ is given by

∂s0

∂σ
= 4γ(1 + σ2)−1

{
I − 2(1 + σ2)−1σσT

}
(26)
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3.2 Tracking Problem
The tracking problem requires that the attitude of spacecraft follow a desired form of attitude

evolution. For tracking,s0(σ) is derived to

s0(σ) = 4γ(1 + σ2)−1σ

−4γ(1 + σ2)−2
{
(1− σ2)I − 2[σ̃] + 2σσT

}
σd (27)

The partial derivative∂s0/∂σ of Eq. (27) is given by

∂s0

∂σ
= 4γ(1 + σ2)−1

{
I − 2(1 + σ2)−1σσT

}

−8γ(1 + σ2)−2
{
σσT

d − σdσ
T + [σ̃d] + (σT

d σ)I
}

+16γ(1 + σ2)−3
{
(1− σ2)I − 2[σ̃] + 2σσT

}
σdσ

T (28)

3.3 Actuator Bandwidth
By replacingsign(s) with sat(s, ε), Eq. (18) becomes

ẋ = −Ps−K
s

ε
+ ∆f + ∆Gu + d (29)

when|s| < ε, i.e. sliding phase. From Eq. (18), we can see that thesliding mode existence condition
is satisfied when|s| = ε. It is desirable to keepε small, so that near ideal sliding mode is obtained.
Eq. (29) may be rewritten as

ṡ + (P +
K

ε
)s = ∆f + ∆Gu + d (30)

which is very similar to a low–pass filter between s and(∆f + ∆Gu + d). If λ ≡ P + K/ε is
defined. We can find that smallerε gives largerλ, i.e. higher actuator bandwidth. This gives a lower
bound forε based on actuator limitations. If we setλ = 2ω/3, yielding:

ε =
3K

2ω − 3P
(31)

Note thatω in Eq. (31) is the response bandwidth of the actuator. It is very important to note that
design parametersP andK assure the sliding condition, and gives actuator bandwidth.

4. Simulation

An example of a three–axis rest–to–rest maneuver is presented and the simultaneous reorien-
tation of all axes is considered here, with variable control torques and the following inertia matrix
taken from (Dwyer & Ramirez 1988)

J = diag[114 86 87] kg −m2

To show the robustness of the controller, disturbance torques are assumed to be

d = [0.005 sin(ωt) 0.003 cos(ωt) − 0.005 sin(ωt)]T N−m

whereω is the disturbance torque frequency, assumed to be 1 rad/s. And the other initial conditions
and design parameters are the following:

σ(t0) = [−0.1 0.5 1.0]T , ω = [0 0 0]T , K = 0.02I, Q = 0.02I
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Figure 1. Plot of modified Rodrigues parameters tra-
jectories.

Figure 2. Plot of angular velocity trajectories.

Figure 3. Plot of switching functions. Figure 4. Switching functions during the terminal
maneuver.

The regulation problem is considered. The constantγ = −0.015sec−1, and the boundary layer
thickness is set toε = 0.001. Also, the control torques are limited to 1.0 N-m. Figure 1 depicts the
time trajectories of modified Rodrigues parameters. Figure 2 shows the angular velocity trajectories.
Figure 3 and 4 show the switching functions trajectories. Figure 4 shows the switching functions
during the terminal maneuver, from the figure one can see that the state trajectories remains well in-
side switching region specified bound layer thickness. The control torques are applied to accomodate
disturbance torques as shown in Figures 5∼7.

5. Conclusions

Nonlinear sliding surface design for large-angle spacecraft maneuvers is studied. The sliding
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Figure 5. Control Torqueu1. Figure 6. Control Torqueu2.

Figure 7. Control Torqueu3.

mode controller is derived based on modified Rodrigues parameter, and analysis of robustness is
peformed for the derived control scheme in the presence of unmodeled effects and disturbances. The
actuator bandwidth is considered using bound layer thickness and sliding mode dynamics. Simu-
lation results show that the control system performs acceptably in the presence of external distur-
bances.
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