• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.028 seconds

Optimization Design of Space Launch Vehicle Using Genetic Algorithm (유전 알고리즘을 이용한 우주 발사체 통합 최적 설계)

  • Lee, Kangkyu;Cha, Seung-won;Yang, Sungmin;Kim, Yong-chan;Oh, Seok-Hwan;Lee, Sangbok;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2018
  • A system design and integrated design process for a space launch vehicle were established based on system engineering. With the mission design results for a given payload weight and trajectory, it is possible to perform optimal design by integrating each unit such as propulsion, weight estimation, and aerodynamic force after analysis, during in the system design process. The program is finally configured to verify that the designed vehicle can perform its mission through 3-DOF trajectory optimization simulation. Genetic algorithms are used as the optimization method, and the optimal design results of the variables and parameters to be considered during design are presented.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

Characteristics of Starship System Development (Starship 시스템 개발 특징)

  • Yoo, Jaehan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2021
  • SpaceX has lowered rocket launch cost innovatively and put first stage reuse to the practical use with Falcon 9. Now the company is developing Starship system that is fully reusable with the heaviest payload in the world. So the system can lower the cost much more and fulfull more diverse mission. For the system the company have developed Raptor engine which is a full-flow staged combustion cycle one with methane fuel. And for the full reusability the company is manufacturing and testing the system prototypes with the barely used technologies such as stainless steel tank, belly flop and retropropulsion during descent. In this study the specification, missions and design features of the system are investigated. Also the development processes of Raptor engine and initial 13 Starship prototypes, which have been manufactured very rapidly, are presented.

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF

Design of Levitation and Propulsion Controller for Magnetic Levitated Logistic Transportation System (자기부상 물류이송시스템의 부상 및 추진제어기 설계)

  • Choi, Dae-Gyu;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • In the paper, we propose a levitation and a propulsion controller for the magnetic levitation logistic transportation system. The levitation controller is designed considering the mutual influence of the electromagnets to minimize roll and pitch movements. In order to solve the structural disadvantages of the magnetic levitation transportation system, we improve the problem of the existing controller by applying the exponential filter to the reference input. DSP-based control hardware is developed and the levitation control method is verified by levitation experiments to the air gap goal. The propulsion controller uses the space vector voltage modulation method. The propulsion controller is designed to follow the position and velocity profile by detecting the absolute position from the bar code information attached to the rail. The position control result shows satisfactory performance through the propulsion control reciprocating motion experiment.

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics (쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.27-37
    • /
    • 2019
  • The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.

Launch Environment Test and Evaluation of Fuel Feeding Unit for Electric Propulsion System to Small-Satellite Applications (소형위성용 전기추진시스템을 위한 연료공급부의 발사환경 시험평가)

  • Kim, Younho;Kang, Seokhyun;Jung, Yunhwang;Kang, Seongmin;Seon, Jongho;Lee, Sang-Hyun;Cha, Won-Ho;Eun, Hee-Kwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1051-1056
    • /
    • 2014
  • A Fuel Feeding Unit of electric propulsion system has been developed for the small-satellite applications. The fuel feeding unit stores the xenon gas with high pressure and density as a fuel. Xenon can affect to system stability since xenon has the transient condition under the critical point which is in ambient temperature on the launch environment. The functional and structural stability on the launch environment needs verification through the ground tests. The design points and verification tests of the system were discussed and test results were described on this text. The system stability on the launch environment was verified through these verification tests.

Study on Design of the Cooling System Used for the Propulsion System of the High-Speed EMU (동력분산형 고속전철의 추진시스템용 냉각장치의 설계 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Ki, Jae-Hyung;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1221-1226
    • /
    • 2008
  • Present, the cooling method of using a phase-change heat transfer such as immersed type, heat pipe etc is applied in cooling of high-capacity power semiconductors of the main power system for the high speed train with the concentrated traction. In order to apply these phase-change cooling system to the high speed EMU to be developed, needed are technological researches of consideration of installing space, air passage, light weight material and miniaturization. Although this research establishes design specifications through theoretical analysis and computational analysis from the basic design process of the cooling system of the propulsion system for the high-speed EMU, when details design is completed, present improvement subject and optimum design before manufacturing the prototype of the cooling system on the basis of analysis results. And then, carried out will be the performance tests through prototype manufacture and reliability estimation by components of cooling system.

  • PDF

Structural Dynamic Analysis of a Space Launch Vehicle using an Axisymmetric Two-dimensional Shell Element

  • Sim, JiSoo;Lee, SangGu;Kim, JunBeom;Shin, SangJoon;Park, SeungSoo;Ohm, WonSuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.485-497
    • /
    • 2017
  • The pogo phenomenon refers to a type of multidiscipline-related instability found in space launch vehicles. It is caused by coupling between the fuselage structure and other structural propulsion components. To predict the pogo phenomenon, it is essential to undertake adequate structural modeling and to understand the characteristics of the feedlines and the propulsion system. To do this, a modal analysis is conducted using axisymmetric two-dimensional shell elements. The analysis is validated using examples of existing launch vehicles. Other applications and further plans for pogo analyses are suggested. In addition, research on the pogo phenomenon of Saturn V and the space shuttle is conducted in order to constitute a pogo stability analysis using the results of the present modal analysis.

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 2: A Practical Application of Flight-axes/Attitude Control Thrusters to the Space Launch Vehicle and Their Design Development Localization (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 2: 비행축/자세제어용 추력기의 우주발사체 적용과 국내 설계개발)

  • Kim, Jeong-Soo;Bae, Dae-Seok;Jung, Hun;Seo, Hang-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.179-182
    • /
    • 2011
  • A practical application of flight-axes/attitude control thrusters to the space launch vehicle and their design development localization are investigated and analyzed. Hydrazine thrusters are mostly used in a final stage of space launch vehicles on account of its higher specific impulse and reliability necessary for the precise attitude control attaining the orbit insertion with higher accuracy.

  • PDF