• 제목/요약/키워드: Space-vector pulse-width modulation

검색결과 145건 처리시간 0.019초

삼상 3레벨 NPC 인버터와 T-type 인버터의 효율개선 및 중성점 제어를 위한 DSVPWMx 적용 및 해석 (DSVPWM Method for Efficiency Improving and Neutral Point Voltage Control of Three-phase Three Level NPC and T-type Inverter)

  • 박주영;박종훈;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2015
  • 대용량 분산 발전원이 증가하면서 이러한 대용량 분산 발전을 효율적으로 운전하기 위한 많은 연구가 진행되고 있다. 본 논문에서는 멀티레벨 인버터 토폴로지 중 NPC와 T-type 인버터의 중성점 전압제어와, DSVPWMx(Discontinuous Space Vector Pulse Width Modulation) 방식을 적용하여 두 개의 멀티레벨 인버터에서 발생하는 효율과 제어방식의 차이를 시뮬레이션 하였다.

  • PDF

Common-Mode Current Reduction with Synchronized PWM Strategy in Two-Inverter Air-Conditioning Systems

  • Baek, Youngjin;Park, Gwigeun;Park, Dongmin;Cha, Honnyong;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1582-1590
    • /
    • 2019
  • A new method for reducing the common-mode current generated by the voltage variations in a two-inverter air conditioner system by applying a synchronized pulse-width modulation (PWM) strategy is proposed. The PWM signals of the master-mode inverter are generated based on the reference voltage, while those of the slave-mode inverter are output in the opposite direction when the master-mode inverter changes its switching state. However, the slave-mode control results in a mismatch between the reference voltage and the actual output voltage that is modified by synchronized control operation. The proposed method is capable of reducing and controlling this voltage error by performing signal selection in the vector space of the slave-mode inverter, which mitigates the distortion of the phase current. The efficacy of this method in reducing conducted emissions has been validated both theoretically and experimentally.

Comparative Analysis of the PWM of an Inverter for an Electric Aircraft Thrust Motor

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.21-29
    • /
    • 2021
  • As global environmental regulations have been strengthened, the eco-friendly market has grown rapidly. In the field of aircraft, research on electric vertical take-off and landing aircraft that can enter city centers and perform personal air transportation using electric propulsion is ongoing. For aircraft using electric propulsion methods to operate reliably, electric power thrust systems are a key factor. Electric aircraft require a high power density for propulsion systems with strict limits on volume and weight. The efficient control of inverter systems is essential for achieving high power density. Therefore, in this paper, the characteristics of inverters and motors were analyzed through simulations based on the space vector pulse width modulation (PWM) and discontinuous PWM methods for controlling inverter systems.

A New Control Model for a 3 PWM Converter with Digital Current Controller considering Delay and SVPWM Effects

  • Min, Dong-Ki;Ahn, Sung-Chan;Hyun, Dong-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.346-351
    • /
    • 1998
  • In design of a digital current controller for a 3-phase (3 ) voltage-source (VS) PWM converter, its conventional model, i.e., stationary or synchronous reference frame model, is used in obtaining its discretized version. It introduces, however, inherent errors since the following practical problems are not taken into consideration: the characteristics of the space vector-based pulse-width modulation (SVPWM) and the time delays in the process of sampling and computation. In this paper, the new hybrid reference frame model of the 3 VS PWM converter is proposed considering these problems. In addition, the direct digital current controller based on this model is designed without any prediction or extrapolation algorithm to compensate the time delay. So the control algorithm is made very simple. It represents no steady-state error in input current control and has the optimized transient responses. The validity of the proposed algorithm is proved by the computer simulation and experimental results.

  • PDF

퍼지 제어기를 이용한 전기자동차 구동용 유도전동기의 속도제어 (Speed Control of Induction Motor for Electric Vehicles Using Fuzzy Controller)

  • 임영철;김광헌;장영학;나석환;위석오;양형렬
    • 전력전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.138-147
    • /
    • 1998
  • 본 논문에서는 구현이 간단하고 강인한 제어특성을 갖는 퍼지제어를 이용하여, 연속적으로 부하와 속도지령이 변하는 전기자동차 구동용 유도전동기가 부하에 무관하게 지령속도를 추종할 수 있는 제어기를 구성하고자 한다. 그리고 유도전동기를 구동하기 위한 PWM(Pulse Width Modulation)파형은 최대출력전압이 높고 디지털구현이 용이한 공간전압벡터 변조법을 이용하여 생성하였다. 제안된 시스템이 빠르고 외란에 강할 뿐만 아니라, 지령 속도에 잘 추종함을 확인할 수 있었다. 따라서 연속적으로 속도지령이 변하고 부하변동을 갖으며, 외란의 영향을 받기 쉬운 전기 자동차의 구동장치에 제안된 퍼지 제어기의 타당성을 입증하였다.

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

3상 유도전동기 구동장치의 동상모드 전류 능동 제거법 (An Active Cancellation Method for the Common Mode Current of the Three-Phase Induction Motor Drives)

  • Uzzaman, Tawfique;Kim, Unghoe;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.96-97
    • /
    • 2019
  • Pulse Width Modulation (PWM) is a widely adopted technique to drive the motor using the voltage source inverters. Since they generate high frequency Common Mode (CM) Voltage, a high shaft voltage in induction motor is induced which leads to parasitic capacitive currents causing adverse effects such as premature deterioration of ball bearings and high levels of electromagnetic emissions. This paper presents an Active Cancellation Circuit (ACC) which can significantly reduce the CM voltage hence the common mode current in the three phase induction motor drives. In the proposed method the CM voltage is detected by the capacitors and applied to the frame of the motor to cancel the CM voltage hence the CM current. Unlike the conventional methods the proposed method does not insert the transformer in between the inverter and motor, a high power rating three phase transformer is not required and no losses associated with it. In addition the proposed method is applicable to any kind of PWM motor drives regardless of their PWM methods. The effectiveness of the proposed method is proved by the experiments with a three phase induction motor (1.1kW 415V/60Hz) combined with a three phase voltage source inverter modulated by the Space Vector Modulation (SVM).

  • PDF

Bus Clamping PWM Based Hysteresis Current Controlled VSI Fed Induction Motor Drive with Nearly Constant Switching Frequency

  • Peter, Joseph;Mohammed Shafi, KP;Ramchand, Rijil
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1523-1534
    • /
    • 2017
  • A Current Error Space Phasor (CESP) based hysteresis controller with online computation of the boundary for two-level inverter fed Induction Motor (IM) drives is presented in this paper. The stator voltages estimated along the ${\alpha}$-and ${\beta}$-axes and the orthogonal current error components of the motor are used in the online computation of the hysteresis boundary. All of the inherent benefits of space phasor based hysteresis controllers such as its quick dynamic response and nearby voltage vector switching are present in the proposed scheme with the added benefit of suppressing switching frequency variations. The similarity in the frequency spectrum of the phase voltage obtained at the output of the inverter using the proposed scheme and Bus Clamping Pulse Width Modulation (BCPWM) based drive is justified with the help of extensive MATLAB SIMULINK simulations. The controller is experimentally verified with a three phase, 2.2 kW IM drive for steady state and transient conditions and the obtained results match the simulation results.

TMS320F2812를 이용한 LBLDCM의 디지털 서보제어기 개발에 관한 연구 (The Study of Digital Servo Controller for LBLDCM Drives Based on TMS320F2812)

  • 조훈희;안재영;김광헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.770-773
    • /
    • 2005
  • 최근 산업 분야에 걸쳐서 고속, 고정밀도의 요구사항에 따라, 회전 모터와 볼 스크류, 벨트를 이용한 직선구동방식보다 빠르고 정확하며, 효율이 높은 직접구동 방식의 리니어모터 및 컨트롤러의 개발이 요구되고 있다. 이런 상황에 고속 연산을 수행할 수 있는 DSP(Digital Signal Processor)의 사용이 불가피하며, 기존의 칩들은 A/D변환기, PWM발생장치 등이 내장되지 않아 제어장치의 부품 수증가 및 복잡성을 피할 수 없었다. 따라서 본 논문에서는 SVPWM(Space Vector Pulse Width Modulation) 및 QEP(Quadrature Encoder Pulse) 회로와 PWM 발생기, 12bit의 고속 A/D변환기, 파워 드라이버보호회로 등을 내장한 TMS320F2812 DSP를 사용하여 반도체장비분야, 자동화분야 등에 사용되는 LBLDCM의 제어를 가능하게 만들었다. 또한, 기존의 DSP 시리즈 보다 연산속도가 고속화되어 고속연산에 의한 시간적 제한을 극복 할 수 있게 되었고, 제어에 필요한 하드웨어적인 기능들을 내장하고 있어서 주변회로가 필요 없게 되었다. 따라서 하드웨어의 간소화와 개발 시간의 단축 및 신뢰도의 향상과 모터 효율의 향상을 가져오도록 하였다. 제안된 제어장치는 제작되어, 실험을 통하여 그 타당성을 입증하였다.

  • PDF