• Title/Summary/Keyword: Space-time block code

Search Result 146, Processing Time 0.036 seconds

A robust detection scheme of OSTBCs with channel estimation errors over time-selective fading channels (실제적인 Time-Selective Fading Channels에서의 Orthogonal Space-Time Block Codes의 Detection Scheme)

  • Yu, Dong-Hun;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.17-18
    • /
    • 2006
  • In this paper, we propose a robust detection scheme of OSTBCs with channel estimation errors over time-selective fading channels. Channel estimation errors are inevitable over time-selective fading channels and even small channel estimation errors dramatically degrade the performance of space-time block coding schemes. Therefore, it is desired to investigate the effect of channel estimation errors on the performance of the proposed detection scheme compared with the existing detection scheme. The proposed detection scheme minimizes noise enhancement and impact of channel estimation errors which occur in an existing detection scheme. It is shown by simulations that the proposed detection scheme performs better than the existing detection scheme over time-selective fading channels.

  • PDF

Performance Analysis and Design of MIMO Systems for Terrestrial Transmission of UHDTV (UHDTV를 위한 MIMO 전송 시스템 성능 분석 및 설계)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2010
  • In this paper, we propose transmission systems for ultra high definition television (UHDTV) through terrestrial transmission by applying the multi-input multi-output (MIMO) technology. The space time block code, hybrid STBC, V-BLAST and linear dis- persion code are considered to support a high data rate of the UHDTV system. The performance of proposed MIMO systems are evaluated through computer simulations. Then we suggest MIMO parameters, number of antennas and optimal transmission scheme to achieve the transmission rate of the UHDTV system.

Residual ISI cancellation and EM-based channel estimation for STBC/SFBC OFDM with insufficient cyclic prefix (불충분한 주기적 프리픽스를 갖는 STBC/SFBC OFDM 시스템을 위한 잔재 ISI 제거 기법 및 EM 기반 채널 추정 기법)

  • Won, Hui-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1154-1163
    • /
    • 2007
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response. In order to prevent a loss of bandwidth efficiency due to the use of a CP, residual intersymbol interference cancellation (RISIC) method has recently been developed. In this paper, we first apply the RISIC algorithm to the space-time block coded (STBC) OFDM and the space-frequency block coded (SFBC) OFDM with insufficient CP. It is shown that in the STBC OFDM, tail cancellation as well as cyclic restoration of the RISIC should be repeated. Second, we propose iterative channel estimation method for the RISIC in the STBC OFDM system with insufficient CP. Based on the expectation-maximization (EM) algorithm, the proposed estimation method exploits the extrinsic probabilities of the channel decoder iteratively. The performance of the proposed method is evaluated by computer simulation in a multipath fading environment.

A Full Utilization of Space-time Block Code in Cooperative Communications (협력 통신에서 시공간부호의 최대 사용 효율)

  • Tin, Luu Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.115-120
    • /
    • 2008
  • We propose a cooperative transmission scheme that uses Hurwitz-Radon space-time code for the relays which help the source to transmit signals to the destination, the full utilization here is that the destination utilizes the broadcast symbols from the source. We present the 2 transmit antennas case in detail because of its simplicity and high data rate. Analysis and simulations show that the proposed scheme achieves full diversity order of 3. The maximum likelihood receiver is also derived and the combining scheme is shown to be very simple.

Distributed Alamouti Space Time Block Coding Based On Cooperative Relay System (협동 중계 시스템을 이용한 분산 Alamouti 시공간 블록 부호)

  • Song, Wei;Cho, Kye-Mun;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.16-23
    • /
    • 2009
  • In this paper, we propose a new distributed Alamouti space-time block coding scheme using cooperative relay system composed of one source node, three relay nodes and one destination node. The source node is assumed to be equipped with two antennas which respectively use a 2-beam array to communicate with two nodes selected from the three relay nodes. During the first time slot, the two signals which respectively were transmitted by one antenna at the source, are selected by one relay node, added, amplified, and forwarded to the destination. During the second time slot, the other two relay nodes implement the conjugate and minusconjugate operations to the two received signals, respectively, each in turn is amplified and forwarded to the destination node. This transmission scheme represents a new distributed Alamouti space-time block code that can be constructed at the relay-destination channel. Through an equivalent matrix expression of symbols, we analyze the performance of this proposed space-time block code in terms of the chernoff upper bound pairwise error probability (PEP). In addition, we evaluate the effect of the coefficient $\alpha$ ($0{\leq}{\alpha}{\leq}1$) determined by power allocation between the two antennas at the source on the received signal performance. Through computer simulation, we show that the received signals at the three relays have same variance only when the value of $\alpha$ is equal to $\frac{2}{3}$, as a consequence, a better performance is obtained at the destination. These analysis results show that the proposed scheme outperforms conventional proposed schemes in terms of diversity gain, PEP and the complexity of relay nodes.

Performance of differential Space-time Block Coded MIMO System using Cyclic Delay Diversity

  • Kim, Yoon-Hyun;Yang, Jae-Soo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.41-45
    • /
    • 2007
  • Multi-input multi-output (MIMO) system can increase data rate, capacity and bit error rate (BER) performance compare to traditional single antenna system. However MIMO technique is pointed out the problem that has high complexity to design receiver. So a recent trend of research on the MIMO system pays more attention to simplified implementation of receiver structure. In this paper, we propose differential space time block code (STBC) for MIMO system with cyclic delay diversity (CDD). This structure can provide a very close performance to that of the conventional diversity scheme with maximum likelihood (ML) detection without channel estimation block while the receiver structure is highly simplified. Bit error rate (BER) performance of the proposed system is simulated for an AWGN channel by theoretical and simulated approaches. The results of this paper can be applicable to the 4G mobile multimedia communication systems.

  • PDF

Distributed SFBC for Relay-Assisted Single Carrier Transmission over Uplink Fast Fading Channels (상향 링크 고속 페이딩 채널에서의 중계기 기반 단일 반송파 전송을 위한 분산 주파수 공간 블록 부호화 기법)

  • Seol, Dae-Young;Kwon, Ui-Kun;Im, Gi-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.25-32
    • /
    • 2007
  • This paper proposes a distributed space-frequency block code (SFBC) for relay-assisted single carrier frequency-domain equalization (SC-FDE). The proposed technique achieves spatial diversity gain over fast fading channels without the complexity of multiple antennas. The mobile equipment of the proposed system has a very simple transmitter structure with constant amplitude transmit sequences, which is desirable especially for uplink communications. In order to obtain spatial diversity, the transmit sequence of relay is efficiently generated in the time domain, which is equivalent to the SFBC. Further, efficient implementation of relay and destination structures is also presented. Extensive simulation results show that the proposed system significantly outperforms the distributed space-time block code (D-STBC) SC-FDE over fast fading channels.

A cooperative virtual MIMO system for moving networks (이동 네트워크를 위한 협력 가상 MIMO 시스템)

  • Kim, Jung-Hyun;Kim, Il-Hwan;You, Cheol-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a cooperative communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving networks. The proposed scheme uses a Space-Time Block Code (STBC) for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. It can also achieve faster transmission time than a conventional scheme by using virtual MIMO configurations. Simulation results have shown that the proposed scheme provides SNR improvement and has faster transmission time compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of UWB communication system to show validity by using the MATLAB.

An Efficient Detection Algorithm for Quasi-Orthogonal Space-Time Block Code with Four Transmit Antennas

  • Le, Minh-Tuan;Pham, Van-Su;Linh, Mai;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.228-232
    • /
    • 2004
  • This paper proposes an efficient detection algorithm, which is composed of an interference nulling-and cancelling-based detection algorithm and a maximum likelihood (ML) detection algorithm having reduced numbers of signal points to be tested, for the quasi-orthogonal space-time code with four transmit antennas. When high-level modulation schemes are employed, the algorithm enables the quasi-orthogonal code to achieve near ML performance with a significant reduction in the computational load.

Soft-Input Soft-Output Multiple Symbol Detection for Ultra-Wideband Systems

  • Wang, Chanfei;Gao, Hui;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2614-2632
    • /
    • 2015
  • A multiple symbol detection (MSD) algorithm is proposed relying on soft information for ultra-wideband systems, where differential space-time block code is employed. The proposed algorithm aims to calculate a posteriori probabilities (APP) of information symbols, where a forward and backward message passing mechanism is implemented based on the BCJR algorithm. Specifically, an MSD metric is analyzed and performed for serving the APP model. Furthermore, an autocorrelation sampling is employed to exploit signals dependencies among different symbols, where the observation window slides one symbol each time. With the aid of the bidirectional message passing mechanism and the proposed sampling approach, the proposed MSD algorithm achieves a better detection performance as compared with the existing MSD. In addition, when the proposed MSD is exploited in conjunction with channel decoding, an iterative soft-input soft-output MSD approach is obtained. Finally, simulations demonstrate that the proposed approaches improve detection performance significantly.