• Title/Summary/Keyword: Space-Time Adaptive Processing

Search Result 59, Processing Time 0.022 seconds

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Application Design and Performance Analysis Simulation of Sigma-Delta STAP for GMTI Mode of Airborne Radar (항공기 레이다의 GMTI 모드를 위한 Sigma-Delta STAP의 적용 설계와 성능 분석 시뮬레이션)

  • Kim, Tae-Hyung;Yoon, Jong-Suk;Jung, Jae-Hoon;Ryu, Seong-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.336-346
    • /
    • 2017
  • Applications of Sigma-Delta STAP, and a method of GMTI processing are presented for GMTI(Ground Moving Target Indication) mode of airborne radar with sigma, delta, and guard channels. We showed results of performance analyses of presented methods by clutter simulation with ICM(Internal Clutter Motion), signal processing simulation and MDV(Minimum Detectable Velocity). Presented methods for Sigma-Delta STAP and GMTI processing are easy to apply practically in GMTI mode of airborne radar without restriction by specific airborne radar system.

A Simple Open Loop Transmit Diversity Scheme for Rician Fading Channels (라이시안 페이딩 채널을 위한 단순한 형태의 개방루프 전송 다이버시티 기법)

  • 김학성;이원철;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.695-705
    • /
    • 2002
  • In this paper, we propose a simple open loop transmit diversity (TD) scheme for the wideband code division multiple access (W-CDMA) systems in Rician multipath fading channels such as rural area or satellite channels where line-of-sight (LOS) paths are in presence. The proposed scheme does not require any pre-processing of transmit data, resulting in simpler structure as compared to conventional closed loop transmit adaptive array (TxAA) and open loop space-time transmit diversity (STTD). We analytically derive the probability density function of signal-to-noise ratio at the Rake receiver output and the uncoded bit error rate performance of the proposed scheme. Extensive simulation is Performed to verify the analytical performance of the proposed scheme under typical Rician multipath fading channel environments. Moreover, comparative results with the conventional TxAA and STTD are also provided. Simulation results show that the proposed scheme shows slightly better performance than the conventional open loop STTD under the channels with very weak LOS components, however, it significantly outperforms the STTD under the channels with dominant LOS components, and achieves a close performance of ideal closed loop TxAA.

Inspection of Coin Surface Defects using Multiple Eigen Spaces (다수의 고유 공간을 이용한 주화 표면 품질 진단)

  • Kim, Jae-Min;Ryoo, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2011
  • In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.

A Adaptive Rendering Image Processing for Based on the Mobile (모바일을 기반으로 하는 적응적인 렌더링 영상 처리)

  • Ju, Heon-Sig;Kim, Ha-Jin
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.425-432
    • /
    • 2003
  • This paper presents an EMR(Electronic Medical Record) chart for efficient PDA through the quad tree image rendering based on the mobile. Using the intermediate image space algorithm instead of the final one for volume rendering, we have solved the probems of th eholes coming from the point-to-point to mapping. The quad-tree based on the delta-tree efficiently represents volume expressions and results in higher compression effects. With the volume rendering, we can decrease the rendering time and get a higher quality and efficiency for PDA through image based rendering.

Forward Looking DPCA using Two Passive Antennas with Vertical Separation

  • Kim Man-Jo;Kho Bo-Yeon;Yoon Sang-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.474-477
    • /
    • 2005
  • In tactical theater, it is crucial to detect ground moving targets and to locate them precisely. This problem can be resolved by using SAR (Synthetic Aperture Radar) sensors providing GMTI (Ground Moving Target Indication) capability. In general, to implement a robust GMTI sensor is not simple because of the strong competitions between target signals and clutter signals on the ground, and low speed of moving targets. Contrary to the case that a delay canceller is mostly suitable for ground surveillance radars, DPCA (Displaced Phase Centered Antenna) or STAP (Space Time Adaptive Processing) techniques have been adapted for GMT! function of modem airborne radars. In this paper, anew scheme of DPCA using two passive antennas with vertical separation is proposed, which also provides good clutter cancellation performance. The proposed scheme enables us to scan straight ahead of the carrying platform that is impossible with typical DPCA configuration. Simulations using various conditions have been performed to validate the proposed scheme, and the results are acceptable.

  • PDF

Omni Scanning DPCA using Two Passive Antennas with Vertical Separation

  • Kim Man-Jo;Kho Bo-Yeon;Yoon Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • In tactical theater, it is crucial to detect ground moving targets and to locate them precisely. This problem can be resolved by using SAR (Synthetic Aperture Radar) sensors providing GMTI (Ground Moving Target Indication) capability. In general, to implement a robust GMTI sensor is not simple because of the strong competitions between target signals and clutter signals from the ground, and low speed of moving targets. Contrary to the case that a delay canceller is mostly suitable for ground surveillance radars, DPCA (Displaced Phase Centered Antenna) or STAP (Space Time Adaptive Processing) techniques have been widely adapted for GMTI function of modern airborne radars. In this paper, a new scheme of DPCA using two passive antennas with vertical separation is proposed, which also provides good clutter cancellation performance. The proposed scheme realizes full azimuth coverage for DPCA operation on an airborne platform, which is impossible with classical DPCA configuration. Simulations using various conditions have been performed to validate the proposed scheme, and the results are acceptable.

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Space-Sharing Scheduling Schemes for NOW with Heterogeneous Computing Power (이질적 계산 능력을 가진 NOW를 위한 공간 공유 스케쥴링 기법)

  • Kim, Jin-Sung;Shim, Young-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.650-664
    • /
    • 2000
  • NOW(Network of Workstations) is considered as a platform for running parallel programs by many people. One of the fundamental problems that must be addressed to achieve good performance for parallel programs on NOW is the determination of efficient job scheduling policies. Currently most research on NOW assumes that all the workstations in the NOW have the same processing power. In this paper we consider a NOW in which workstations may have different computing power. We introduce 10 classes of space sharing-based scheduling policies that can be applied to the NOW with heterogeneous computing power. We compare the performance of these scheduling policies by using the simulator which accepts synthetically generated sequential and parallel workloads and generates the response time and waiting time of parallel jobs as performance indices of various scheduling strategies. Through the experiments the case when a parallel program is partitioned heterogeneously in proportion to the computing power of workstations is shown to have better performance than when a parallel program is partitioned into parallel processes of the same size. When the owner returns to the workstation which is executing a parallel process, the policy which just lowers the priority of the parallel process shows better performance than the one which migrates the parallel process to a new idle workstation. Among the policies which use heterogeneous partitioning and process priority lowering, the adaptive policy performed best across the wide range of inter-arrival time of parallel programs but when the load imbalance among parallel processes becomes very high, the modified adaptive policy performed better.

  • PDF

Performance Analysis of Mode Switching Scheme for Reduction of Phase Distortion in GPS Anti-jamming Equipment Based on STAP Algorithm

  • Jung, Junwoo;Yang, Gi-Jung;Park, Sungyeol;Kang, Haengik;Kwon, Seungbok;Kim, Kap Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • A method that applies space-time adaptive signal processing (STAP) algorithm based on an array antenna consisting of multiple antenna elements has been known to be effective to remove wide-band jamming signals in GPS receivers. However, the occurrence of phase distortion in navigation signals has been a problem when navigation signals, from which jamming signals are removed using STAP, are supplied to global positioning system (GPS) receivers. This paper verified the navigation performance degradation as a result of phase distortion. To mitigate this phenomenon, this paper proposes a mode switching scheme, in which a bypass mode is adopted to make the best use of the tracking performance of receivers without performing signal processing when jamming signals are not present or weak, and a STAP mode is employed when jamming signals exceed the threshold value. In this paper, the mode switching scheme is proposed for two environments: when receivers are stationary, and when receivers are moving. This paper confirmed that the performance of position error improved because phase distortion could be excluded due to STAP if the bypass mode was adopted under a condition where the jamming signal power level was below the threshold value in an environment where receivers were stationary. However, this paper also observed that the navigation failed due to the instability of tracking performance of receivers due to phase distortion that occurred at the switching time, although the number of switching could be reduced dramatically by proposing a dual threshold scheme of on- and off-thresholds that switched a mode due to the array antenna characteristics of varying gains according to the jamming signal incident direction in an environment where receivers were moving. The analysis results verified that running the STAP algorithm at all times is more efficient than the mode switching, in terms of maintaining stable navigation and ensuring position error performance, to remove jamming signals in an environment where receivers were moving.