• 제목/요약/키워드: Space welding

검색결과 74건 처리시간 0.023초

Verification on the Configuration Change of Thruster Heat Shield for Satellite Attitude Control through Stress Analysis (구조해석을 이용한 인공위성 자세제어용 추력기 열차폐막의 형상 변경에 대한 타당성 검증)

  • Lee, Kyun-Ho;Kim, Jin-Hee;Han, Cho-Young;Choi, Joon-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권6호
    • /
    • pp.126-133
    • /
    • 2004
  • MRE-1 Dual Thruster Module(DTM), which will be used in KOMPSAT(Korea Multi-Purpose Satellite), can provide reliable and cost-effective means for attitude and maneuvering control system. Thruster heat shield, one of the main components of DTM, is designed to prevent the critical radiative heat exchange between thruster and satellite during firing. To overcome the manufacturing difficulties, a electroforming process is preferred to classical welding process. In this case, an inner diameter of a new shield will be decreased a little due to the change of manufacturing process. Therefore, the interference problem between thruster nozzle and heat shield is investigated through structural analysis and their results are described in this paper.

Performance evaluation of lattice girder depending on the quality of steel (강재 품질에 따른 격자지보재의 성능평가)

  • Jung, Hyuk-Sang;Shin, Young-Wan;Song, Ki-Il;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제18권2호
    • /
    • pp.165-173
    • /
    • 2016
  • This paper dealt with contents on the performance evaluation of standardized steel and non-standardized steel of lattice girder. Lattice girder is arch type tunnel supports made of structural steel bar and it is girder used to ensure the stability of tunnel by suppressing any transformation of ground as much as possible during tunnel excavation. The performance evaluation of lattice girder can be conducted through bending strength test, tensile strength test and tunnel standard specification specifies that welding structural steel with over 500MPa yield strength shall be used. However, it is difficult to distinguish visually between standardized steel and non-standardized steel onsite if low-quality structural steel is used. Accordingly, this paper conducted performance evaluation of standardized steel and non-standardized steel of lattice girder to point out the issue of deteriorated yield strength of non-standardized steel, while proposed a method of verifying yield strength onsite.

Study on Development Method of VR Training Contents for Power Plant Safety Education - Focused on sealed space and welding fire - (발전소 안전교육 가상현실 콘텐츠 개발 방법 연구 - 밀폐공간 및 용접화재를 중심으로 -)

  • Min, Seol-hui;Park, Bong-sung;Kim, Yoo-shik;Lee, Sung-Ki;Lee, Dong-Joon;Kang, Ki-Heon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.367-368
    • /
    • 2019
  • 여러 가지 안전사고 항목 중에 밀폐공간 작업과 관련된 사고는 다른 사고에 비해 사망으로 이어질 가능성이 매우 높으며, 사고 발생 시 2명 이상이 동시에 사망하거나 부상당할 가능성이 높은 사고다. 안전보건공단 자료에 의하면, 사고자 2명 중 1명이 밀폐공간 질식사고자이다. 또한 용접작업은 발전소 작업 현장에서는 보일러 튜브 교체 및 수리 등 다양한 부분에서 많이 사용되고 있다. 특히 발전소는 위험물질을 다량 보유하고 있는 곳으로, 고열, 불티에 의한 화재폭발은 대형 인명사고로 이어질 가능성이 매우 높다. 그러나 밀폐공간 작업 및 용접작업에 대한 안전교육은 직접 체험이 어렵기 때문에 효과적인 교육 방법에 대한 연구가 필요하다. 그러므로 본 연구에서는 가상현실 기술을 적용하여 발전소 작업 현장 인원을 대상으로 안전교육이 가능한 밀폐공간 작업 및 용접작업 시 일어날 수 있는 일을 체험할 수 있도록 한 가상현실 안전교육 콘텐츠를 개발한 내용에 대해 살펴보고자 한다.

  • PDF

Structural Performances of an Axially-loaded Node in Single Layered Free Form Space Structures (단층 프리폼 대공간 구조물의 노드에 대한 축하중 구조성능 평가)

  • Lee, Kyoung-Ju;Oh, Jin-Tak;Hwang, Kyung-Ju;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • 제24권1호
    • /
    • pp.59-71
    • /
    • 2012
  • Results of the analysis of the structural behavior of axially loaded nodes in freeform structure were not fully understood due to certain difficulties, including the application of various welding and bolting types. In this study, a node of single layered freeform structure was tested to determine its structural behavior when subjected to axial loads. The tests were classified into node ball tests to evaluate the center of the node subjected to cyclic and monotonic loading. The node part tests were also conducted to evaluate the whole node subjected to monotonic loading. The test showed that the node ball is safe with the tensile force, but the node ball needs to increase its strength with the node loaded compressive force due to the additional bending moment of the node ball's asymmetric form.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제22권2호
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

A Study on Comparing Characteristics of Le Corbusier′s Furniture Design with Alvar Aalto′s (르 꼬르뷔지에와 알바 알토의 가구디자인 특성 비교 연구)

  • 이진영
    • Korean Institute of Interior Design Journal
    • /
    • 제13권5호
    • /
    • pp.162-172
    • /
    • 2004
  • Architects and designers of the 20th Century made various efforts to establish new design languages reflecting the changes of society, the times, and environment. They used furniture, especially chairs, as controversial items of aesthetic value, society and ideology. Le Corbusier and Alvar Aalto are furniture designers as well as architects, who adopted this ‘spirit of the times’ actively and have greatly contributed to modernism. This study will help us to understand the diversity of design since modernism, by comparing these two designers' furniture design. It also covers the common factors In modern furniture design, and analyses their individuality and likeness In design. The following is a comparison of furniture design by Le Corbusier and Alvar Aalto. Le Courbusier linked International design and Aalto linked Rational design and Organic concept design to their furniture, just as they did in their architecture. They were able to establish the base of modern furniture design by adapting new concepts and pursuing humanism. In structure, Le Corbusier's furniture Is simple and proportional. It demonstrates a sophisticated geometric composition, mechanical beauty. On the other hand, Aalto rationally linked nature with human requirements and his furniture is organic and in harmony with geometric structure. In function, Le Corbusier's furniture is standardized and prefabricated. He designed for the user so they could choose to use the furniture efficiently to suit their needs. In comparison with Le Corbusier, Aalto Invented the ‘Stacking Chair’ which allows a more effective use of space and reflected the structure of the human body to improve the user's comfort. In materials and techniques, Le Corbusier used new materials like metal or leather, and attempted new ways such as welding, prefabrication, and standardization for production. On the contrary, Alto mainly used birch, which is the traditional material in Finland, and tried new bent wood techniques and joining methods.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권2호
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제21권1호
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제20권9호
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Dynamic Analysis to Select Main Parts of Four-Axis Palletizing Robots (4축 이적재 로봇의 주요 부품 선정을 위한 동적 해석)

  • Park, Il-Hwan;Jeon, Yong-Jae;Go, A-Ra;Seol, Sang-Seok;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권12호
    • /
    • pp.62-69
    • /
    • 2020
  • The demand for industrial robots is proliferating with production automation. Industrial robots are used in various fields, such as logistics, welding, and assembly. Generally, six degrees of freedom are required to move freely in space. However, the palletizing robot used for material management and logistics systems typically has four degrees of freedom. In designing such robots, their main parts, such as motors and reducers, need to be adequately selected while satisfying payload requirements and speed. Hence, this study proposes a practical method for selecting the major parts based on dynamic analysis using ADAMS. First, the acceleration torques for the robot motion were found from the analysis, and then the friction torques were evaluated. This study introduces a constant-speed torque constant instead of friction coefficient. The RMS torque and maximum power of each motor were found considering the above torques. After that, this study recommends the major specifications of all motors and reducers. The proposed method was applied to a palletizing robot to verify the suitability of the pre-selected main parts. The verification result shows that the proposed method can be successfully applied to the early design stage of industrial robots.