• Title/Summary/Keyword: Space time modulation

Search Result 212, Processing Time 0.023 seconds

The Solar-Type Contact Binary BX Pegasi Revisited

  • Lee, Jae-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Youn, Jae-Hyuck
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • We present the results of new CCD photometry for the contact binary BX Peg, made during three successive months beginning on September 2008. As do historical light curves, our observations display an O'Connell effect and the November data by themselves indicate clear evidence for very short-time brightness disturbance. For these variations, model spots are applied separately to the two data set of Group I (Sep.--Oct.) and Group II (Nov.). The former is described by a single cool spot on the secondary photosphere and the latter by a two-spot model with a cool spot on the cool star and a hot one on either star. These are generalized manifestations of the magnetic activity of the binary system. Twenty light-curve timings calculated from Wilson-Devinney code were used for a period study, together with all other minimum epochs. The complex period changes of BX Peg can be sorted into a secular period decrease caused dominantly by angular momentum loss due to magnetic stellar wind braking, a light-travel-time (LTT) effect due to the gravitational effect of a low-mass third companion, and a previously unknown short-term oscillation. This last period modulation could be produced either by a second LTT orbit with a period of about 16 yr due to the existence of a fourth body or by the effect of magnetic activity with a cycle length of about 12 yr.

  • PDF

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Improvement of the Adaptive Modulation System with Optimal Turbo Coded V-BLAST Technique using STD Scheme (선택적 전송 다이버시티 기법을 적용한 최적의 터보 부호화된 V-BLAST 적응변조 시스템의 성능 개선)

  • Ryoo, Sang-Jin;Choi, Kwang-Wook;Lee, Kyung-Hwan;You, Cheol- Woo;Hong, Dae-Ki;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.6-14
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder in decoding Algorithm of V-BLAST: ordering and slicing. The extrinsic information is used by a priori probability and the system decoding process is composed of the Main Iteration and the Sub Iteration. And comparing the proposed system with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. In addition, we observe the proposed system using STD (Selection Transmit Diversity) scheme. As a result of simulation, Comparing with the conventional Turbo Coded V-BLAST technique with the Adaptive Modulation systems, the optimal Turbo Coded V-BLAST technique with the Adaptive Modulation systems has better throughput gain that is about 350 Kbps in 11 dB SNR range. Especially, comparing with the conventional Turbo Coded V-BLAST technique using 2 transmit and 2 receive antennas, the proposed system with STD (Selection Transmit Diversity) scheme show that the improvement of maximum throughput is about 1.77 Mbps in the same SNR range.

Performance Improvement of the Combined AMC-MIMO Systems with Independent MCS Level Selection Method (독립적인 MCS 레벨 선택 방식이 적용된 AMC-MIMO 결합 시스템의 성능 개선)

  • Hwang, In-Tae;Choi, Kwang-Wook;Ryoo, Sang-Jin;Lee, Kyung-Hwan;You, Cheol-Woo;Hong, Dae-Ki;Kang, Min-Goo;Kim, Cheol-Sung
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2007
  • In this paper, we propose and observe a system that adopts Common-MCS (Modulation and Coding Scheme) level over all layer and Independent-MCS level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement in case of Independent-MCS level. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7{\sim}9dB$ SNR (Signal-to-Noise Ratio) range against using Common-MCS level. In addition, the combined AMC-V-BLAST system using MMSEnulling method with receive diversity is verified that the difference of throughput between Independent MCS level system and common MCS level system in $7dB{\sim}9dB$ SNR is about 350kbps more or less.

  • PDF

Performance Improvement of the combined AMC-MIMO system with STD and MCS level selection method (STD와 MCS 레벨 선택 방식을 고려한 AMC-MIMO 결합 시스템의 성능개선)

  • Hwang, In-Tae;Lee, Kyung-Hwan;Choi, Kwang-Wook;Ryoo, Sang-Jin;Kang, Min-Goo;Kim, Chesol-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.374-384
    • /
    • 2007
  • In this paper, we propose and observe a system that adopts Independent-MCS (Modulation and Coding Scheme) level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. In addition, we consider the throughput performance of combined AMC-V-BLAST system using STD (Selection Transmit Diversity) and Independent-MCS level. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement. As a result of simulation Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7{\sim}9dB$ SNR (Signal-to-Noise Ratio) range and the combined AMC-V-BLAST system with STD and Independent-MCS level achieves a gain of 350kbps in the same SNR range.

A Study on Spatial Application of Digital Modulation Patterns - Focusing on generating digital patterns - (디지털 패턴의 생성과 공간적용방법 연구 - 디지털패턴의 생성을 중심으로 -)

  • Park, Jeong-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.100-111
    • /
    • 2010
  • 'Pattern' is the term that is frequently used in the aspects of history, society, and science. It always appears in the remains or relics of the age of civilization when recording was started, and its evaluation and value differ by time. Patterns in the ancient civilization were symbolic, social, and spatially crucial. However, after the modernization, they were considered to be immoral and unnecessary, so the range of their significance came to reduce. Due to the development of science, ornament patterns lost the limitation of its range of use along with new interpretation of them. Especially with the advent of new scientific theories such as the evolution theory from the biological aspect, quantum mechanics, and super string theory, morphological possibilities more than the human scale perceived by men came to be discovered. Living organisms maintain their lives through patterns, structures, and processes in order to produce a system alive. Among them, patterns are the organization of relations determining the characteristics of the system. The present patterns may correspond to this meaning. The pattern in a space is the matter of how to relate the components after all. In a space, however, there are numerous components mingled with one another. If these tasks are conducted as analogue work, it will take a lot of time and effort. However, if digital media are utilized to perform the tasks like analysis, generation, or fabrication, it will produce a result with higher precision and efficiency. In this sense, parametric modeling is quite useful media. Opening morphological variation, it realizes more possibilities, connects conveniently the relations between complex components composing a space, and helps produce creative patterns.

A Golden Coded-Spatial Modulation MIMO System (골든 부호 기반의 공간 변조 다중 안테나 시스템)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, the spatial modulation (SM) multi-input multi-output (MIMO) system is proposed for indoor wireless local area networks (WLANs) with improved spectral efficiency. SM is suitable for high speed WLANs with avoiding the inter channel interference (ICI). Only one transmit antenna is activated in SM at each symbol interval. Therefore, it fails to attain the maximum coding gain of MIMO. The space time block code (STBC)-SM MIMO system can attain the maximum diversity gain at the expense of spectral efficiency. The proposed Golden-SM MIMO system uses the Golden code to improve the coding gain and spectral efficiency at the same time. The Golden code is adapted for STBC-SM and it makes the new code book for transmission symbols. The performance of the proposed system is compared with the conventional systems with computer simulations.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.

Energy Model Based Direct Torque Control of Induction Motor Using IP Controllers

  • Mannan, Mohammad Abdul;Murata, Toshiaki;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.405-411
    • /
    • 2012
  • This paper deals with direct torque control of an induction motor (IM) with constant switching frequency. The desired torque is obtained from the speed controller which is designed using the IP controller. Decoupling control of torque and flux is developed based on the energy model of IM using the IP controller strategies. The desired d-axis and q-axis stator voltage components are obtained from the designed controller, which decouples torque and flux. The constant switching frequency can be applied using space-vector pulse width modulation, since the desired stator voltage can be known from the decoupling torque and flux controllers. In order to achieve stable operation of the proposed IP controllers, the gains of the controllers are chosen by setting the poles in negative (left) half of s-plane and by choosing the rising time for the response of the step function. The proposed controller was verified in simulations using Matlab/Simulink and results have proven excellent performance. It was found that the proposed IP controllers can provide excellent performance to track the desired torque and speed and to reject the disturbance of load.

An Efficient Detection Algorithm for Quasi-Orthogonal Space-Time Block Code with Four Transmit Antennas

  • Le, Minh-Tuan;Pham, Van-Su;Linh, Mai;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.228-232
    • /
    • 2004
  • This paper proposes an efficient detection algorithm, which is composed of an interference nulling-and cancelling-based detection algorithm and a maximum likelihood (ML) detection algorithm having reduced numbers of signal points to be tested, for the quasi-orthogonal space-time code with four transmit antennas. When high-level modulation schemes are employed, the algorithm enables the quasi-orthogonal code to achieve near ML performance with a significant reduction in the computational load.