• 제목/요약/키워드: Space technology

Search Result 9,680, Processing Time 0.035 seconds

Determination of VOC in aqueous samples by the combination of headspace (HS) and solid-phase microextraction (SPME) (HS-SPME 방식에 기초한 물 중 VOC 성분의 분석기법에 대한 연구: 3가지 실험 조건의 변화와 분석감도의 관계)

  • Park, Shin-Young;Kim, Ki-Hyun;Yang, H.S.;Ha, Joo-Young;Lee, Ki-Han;Ahn, Ji-Won
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The application of solid phase microextraction (SPME) is generally conducted by directly immersing the fiber into the liquid sample or by exposing the fiber in the head space (HS). The extraction temperature, the time of incubation, and application of stirring are often designated to be the most important parameters for achieving the best extraction efficiencies of HS-SPME analysis. In this study, relative importance of these three analytical parameters involved in the HS-SPME method is evaluated using a polydimethylsiloxane/carboxen (PDMS/CAR) fiber. To optimize its operation conditions the competing relationships between different parameters were investigated by comparing the extraction efficiency based on the combination of three parameters and two contracting conditions: (1) heating the sample at 30 vs. 50 C, (2) exposing samples at two durations of 10 vs. 30 min, and (3) application of stirring vs. no stirring. According to our analysis among 8 combination types of HS-SPME method, an extraction condition termed as S50-30 condition ((1) 1200 rpm stirring, (2) $50^{\circ}C$ exposure temp, and (3) 30 min exposure duration) showed maximum recovery rate of 45.5~68.5% relative to an arbitrary reference of direct GC injection. According to this study, the employment of stirring is the most crucial factor to improve extraction efficiency in the application of HS-SPME.

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.

Experimental Study of Metal Surface Wave Communication for Engine room of Vessels (선박 기관실에서의 금속체 표면파 통신 활용 연구)

  • Jin-Woo Kong;Hak-Sun Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.108-109
    • /
    • 2022
  • In this study analyzed experimental data on noise interference caused by engine operating apply surface wave communication in the engine room. For the experiment, 7 areas of the engine room on 256 ton tug boat and measured noise during engine on off using signal analyzer for effect surface wave communication. In order to construct and actual communication network based on the analysis of the noise and confirm the characteristics of surface wave communication in the area made metal bulkheads the actual communication network installed communication equipment between three metal bulkheads and conducted a comparative experiment with wireless communication. The difference was confirmed. As a result, in the case of surface wave communication, there was no significant difference in the transmission and reception rates before and after engine operation in an environment with three bulkheads, but in the case of Wi-Fi using wireless, the performance deteriorated significantly during operation. was confirmed. As a result of analyzing the experimental data, it was confirmed that noise caused by engine operation affects wireless communication but does not affect surface wave communication. Therefore, even in the area with a lot of electromagnetic wave noise in the ship, when the surface wave communication system is configured using the ship's metal structure, it is possible to replace the wireless communication and furthermore, it is possible to apply the surface wave communication in the enclosed space and the engine room in the ship.

  • PDF

A Study on Management and Improvement of P University Libraries with Viewpoint of Five Laws of Library Science: Focused on the first law and the fifth law (도서관학 5법칙으로 본 P대학도서관 운영과 개선방안)

  • Sun-Gu Jeon;Yong-Jae Lee
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.3
    • /
    • pp.57-80
    • /
    • 2023
  • The purpose of this study is to examine the current status of university library operation through the five laws of library science and suggest ways to improve it. To this end, the operation status of four national and public university libraries was analyzed with the scope of the study as the Busan area. Furthermore, for an in-depth investigation, the P University library in Busan was examined as a case. The operation status of national and public university libraries in the Busan region was analyzed by dividing them into the categories of university library collection materials, facilities, staff, material purchase costs, and users from 2018 to 2022. In particular, there was a decrease in users and a shortage of librarians due to COVID-19. In the case study, the operation status of P University library was investigated focusing on the first and fifth laws of Ranganathan's five laws of library science. In the first law, the study was conducted on the aspects of access to and use of the collection, library location, usage time and book lending, and staff. In the fifth law, the investigation was divided into service improvement aspects according to changes in digital technology of P University library and library environment improvement aspects according to changes in user characteristics. As a result of the study, 'establishment of library space composition strategy', 'establishment of blue ocean strategy', and 'expansion of recruitment and deployment of librarians' were suggested as improvement plans.

Simulating tentacle Creature with External Magnetism for Animatronics (외부 자력을 이용한 촉수 생명체 애니매트로닉스 시뮬레이션)

  • Ye Yeong Kim;Do Hee Kim;Ju Ran Kim;Na Hyun Oh;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.1-9
    • /
    • 2023
  • The control technology of animatronics is an interesting topic explored in various fields, including engineering, medicine, and art, with ongoing research efforts. The conventional method for controlling the movement of animatronics is to use electric motors installed inside the body. However, this method is difficult to apply when expressing a narrow space inside the body. In this study, a method of using external forces instead of installing mechanical devices inside the body was proposed to control the movement of a thin and long tentacle organism. Specifically, in this study, the joint body of animatronics was made of magnetic metal material so that it could be affected by the force of an externally installed electromagnet. The strength of the electromagnet was controlled by a PID controller to enable real-time control of the position of the animatronics body. In addition, the magnet was made to rotate, and the speed of rotation was changed to create various movements. Through virtual environment simulations, our experiments demonstrate the superiority of the proposed method, showcasing real-time control by users and the creation of animations in various styles.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

Utilizing Abandoned Mines in Regional Development: Feasibility of Underground Data Centers and Public Sports Facilities (폐광지역발전을 위한 폐광산 활용방안 연구: 지하 데이터센터 및 공공체육시설로의 운용성 평가)

  • Hyeong-Geol Kim;Ganghui Kim;Sanghyun Bin;Won-Sik Woo;Jongmun Cha;Chang-Uk Hyun
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.737-753
    • /
    • 2023
  • Abandoned mines represent unused space resulting from resource use and changes in industrial environments. Efforts are underway to repurpose such underground spaces, leveraging their unique attributes of temperature stability, shading, and security. This study aimed to assess the feasibility of operating high-demand data centers and public sports facilities as potential recycling options for abandoned mine spaces. The status of data centers located in abandoned mines abroad was examined, including their operational technology capitalizing on the advantages of underground spaces. Considering the varying sizes of underground spaces in different types of abandoned mine in South Korea, the suitability of installing facilities for 12 different sports was evaluated for potential contributions to the health and welfare of local residents. The utilization of abandoned mine spaces as data centers and public sports facilities is expected to not only recycle industrial heritage but also to allow new development opportunities for local communities.

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.

An Exploratory Study on Organizational Smart Learning Success from an HRD Perspective (HRD 관점에서 기업의 스마트 러닝 성공을 위한 탐색적 연구)

  • Yeseul Oh;Jaeyoung An;Haejung Yun
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.219-235
    • /
    • 2023
  • The advancement of digital technology and the impact of COVID-19 have brought about changes in corporate innovation and organizational culture, thereby highlighting the significance of Smart Learning in the field of HRD (Human Resource Development). This trend has led to an increased interest in personalized Smart Learning among employees due to the growth of hybrid work and the widespread adoption of smart work practices. This study aimed to illuminate the relative importance of the factors that constitute Smart Learning from the perspective of HRD practitioners. Through a review of prior literature, Smart Learning hierarchy and factors most fitting to the current context were identified, and their relative importance was determined using the AHP method. Consequently, in the first-tier factors, importance was confirmed in the order of 'Learning Activities', 'Teaching Activities', 'Learning Content', 'Assessment and Evaluations', and 'Learning Time and Space'. At the second-tier encompassing all factors, 'Pedagogical Strategy', 'Learning Results', 'Learning Tasks', 'Learning Goal', and 'Learning Support' emerged within the top five factors. These findings are significant in that they redefine the concept of smart learning and propose an academic framework for future research. Additionally, from a practical perspective, it is anticipated that this study will contribute valuable insights for HRD practitioners, aiding them in focusing on which factors to prioritize for enhancing and advancing Smart Learning initiatives.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.