• Title/Summary/Keyword: Space system

Search Result 14,216, Processing Time 0.04 seconds

A Comparison of Traditional Living Space Based on Family System In Korea, China and Japen (${\cdot}$${\cdot}$일 가족관계에 따른 전통주거공간 비교연구)

  • Kim Do-Yeon;Oh He-Kyung
    • Journal of Families and Better Life
    • /
    • v.23 no.3 s.75
    • /
    • pp.169-183
    • /
    • 2005
  • The present study purposed to identify differences and similarities in traditional residential space among Korea. China and Japan, which share similar social structure, and to make a comparative analysis on differences in traditional residential space according to family relation in the three countries. For these Purpose, this study selected residences, which are similar to one another in terns of time, class and economy and analyzed them using their floor plans and photographs. The results of this research are as follows. Knrea, China and Japan, all of which have family-centered social structure, separate their residential space from the external society and particularly women's space is placed inside men's space or in a secluded area. The most remarkable characteristic of residential space in Korea is the division of living spare between men and women. Space is allocated according to the hierarchical order of families. In this way, the position or order of family members is reflected in the use of space. Characteristically in China based on the large-family system each family is given a space for independent life. Particularly as the relation among brothers is emphasized, space is allocated equally to all brothers but the status of a space is determined by the order of the residents. Residential space in Japan is organized to emphasize the absolute authority and status of the head of the family. As the space is planned focused on the family head's daily life and guest reception, the relation among other family members is ignored. That is, Japanese residence is a social space for the family head's guest reception, Chinese residence is a family-centered space rather than a social space, and Korean residence accommodates both space for family life and social space.

A Study on the System Design for Deep-Space Probe Reference Model (표준 심우주 탐사선 시스템 설계 연구)

  • Euikeun Kim;Hyeon-Jin Jeon
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.44-57
    • /
    • 2023
  • In order for a latecomer in deep-space exploration such as Korea to quickly keep pace with advanced deep-space exploration countries in the mutually-beneficial space exploration market, it is essential to derive a deep-space probe reference model that can reduce development period and cost. In this paper, concept and configuration for the deep-space probe reference model consisting of basic, lightweight, and expansion types are newly presented, which are based on commonly required designs for various deep-space probes. The proposed configuration adopts modular design so that the expandability and design/implementation efficiency are improved. In addition, the electrical system design pursuing lightweight and expandability is also described, which is applicable to the proposed three-types of deep-space probe reference model.

Design of Current and Speed Controller for DC Motor Drive System Using dSPACE System (dSPACE 시스템을 이용한 직류 전동기 구동 시스템의 전류 및 속도 제어기 설계)

  • Ji Jun-Keun;Lee Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.338-343
    • /
    • 2006
  • In this paper, design of current and speed controller for DC motor drive system using dSPACE 1104 system is introduced. Current and speed controller is designed and implemented using MATLAB/SIMULINK program simply and easily, and speed control response of DC motor can be advanced. Current and speed control of DC motor is carried in DSP control board using dSPACE system. Speed feedback is processed through QEP using pulse encorder as speed sensor, and current feedback is processed through A/D converter using hall sensor as current sensor. Controller is designed to PI current controler and PI speed controller. Current and speed response is verified through simulations and experiments.

  • PDF

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

A Study on The Modulor System Shown in Structure and Envelope of Le Corbusier's Works (Le Corbusier 건축의 구조와 외피에 나타나는 모듈러 시스템에 관한 연구)

  • Cho, Sung-Hyun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • As for structural system, which constitutes his construction, there are column inside dimension and span which constitutes plane, and as for constructions for section, there are C.H and slab, and as for constructive factors for envelope, there are window and closing panel of outer wall, and as for opening, there are punching window and wave window. With these constructive parts and opening of envelope, his construction composes volume and mass. The relation of structure and modulor which are shown in his later construction can be divided in two cases that modulor is directly and indirectly adapted for rate and measure calculation of the constructive body. As for indirectly adapted case, we can find it form most of his later construction, it is living place in which human beings life is, and it is adapted mainly for small space. In his construction, he tried to tell human scale and sense of musical rhythm through modulor. In other words, he played sense of space and musical scale by adapting regular and repetitive modulor of opening, and in small space for daily life, he made the size of space into the space which human can perceive. And, if we interpret mudulor in modern meaning, it is an establishment of radius of human act. And, we can make organic and harmonic design of space if we use modulor as origin of human centered measurement calculation, and if we adapt space after dividing by use.

The Public Release System for Scientific Data from Korean Space Explorations (한국의 우주탐사 과학데이터 공개시스템)

  • Joo Hyeon Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.373-384
    • /
    • 2023
  • Initiated as Korea's inaugural space exploration endeavor, the lunar exploration development project has resulted not only the Danuri lunar orbiter but also payloads designed to achieve mission objectives and the associated Korea Pathfinder Lunar Orbiter (KPLO) Deep-space Ground System for the operation and control of the Danuri. Scientific data gathered by four scientific payloads, developed by domestic institutions and installed on board the Danuri, will be publicly available starting January 2024. To facilitate this, the first-ever Korean space exploration scientific data management and public release system, KARI Planetary Data System (KPDS), has been developed. This paper provides details on the configuration and functions of the established KPDS website.

Development Strategy of Orbit Determination System for Korea's Lunar Mission: Lessons from ESA, JAXA, ISRO and CNSA's Experiences

  • Song, Young-Joo;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.247-264
    • /
    • 2014
  • In this paper, a brief but essential development strategy for the lunar orbit determination system is discussed to prepare for the future Korea's lunar missions. Prior to the discussion of this preliminary development strategy, technical models of foreign agencies for the lunar orbit determination system, tracking networks to measure the orbit, and collaborative efforts to verify system performance are reviewed in detail with a short summary of their lunar mission history. Covered foreign agencies are European Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organization and China National Space Administration. Based on the lessons from their experiences, the preliminary development strategy for Korea's future lunar orbit determination system is discussed with regard to the core technical issues of dynamic modeling, numerical integration, measurement modeling, estimation method, measurement system as well as appropriate data formatting for the interoperability among foreign agencies. Although only the preliminary development strategy has been discussed through this work, the proposed strategy will aid the Korean astronautical society while on the development phase of the future Korea's own lunar orbit determination system. Also, it is expected that further detailed system requirements or technical development strategies could be designed or established based on the current discussions.

Efforts against Cybersecurity Attack of Space Systems

  • Jin-Keun Hong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.437-445
    • /
    • 2023
  • A space system refers to a network of sensors, ground systems, and space-craft operating in space. The security of space systems relies on information systems and networks that support the design, launch, and operation of space missions. Characteristics of space operations, including command and control (C2) between space-craft (including satellites) and ground communication, also depend on wireless frequency and communication channels. Attackers can potentially engage in malicious activities such as destruction, disruption, and degradation of systems, networks, communication channels, and space operations. These malicious cyber activities include sensor spoofing, system damage, denial of service attacks, jamming of unauthorized commands, and injection of malicious code. Such activities ultimately lead to a decrease in the lifespan and functionality of space systems, and may result in damage to space-craft and, lead to loss of control. The Cybersecurity Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix, proposed by Massachusetts Institute of Technology Research and Engineering (MITRE), consists of the following stages: Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command & Control, Exfiltration, and Impact. This paper identifies cybersecurity activities in space systems and satellite navigation systems through the National Institute of Standards and Technology (NIST)'s standard documents, former U.S. President Trump's executive orders, and presents risk management activities. This paper also explores cybersecurity's tactics attack techniques within the context of space systems (space-craft) by referencing the Sparta ATT&CK Matrix. In this paper, security threats in space systems analyzed, focusing on the cybersecurity attack tactics, techniques, and countermeasures of space-craft presented by Space Attack Research and Tactic Analysis (SPARTA). Through this study, cybersecurity attack tactics, techniques, and countermeasures existing in space-craft are identified, and an understanding of the direction of application in the design and implementation of safe small satellites is provided.