DOI QR코드

DOI QR Code

A Study on the System Design for Deep-Space Probe Reference Model

표준 심우주 탐사선 시스템 설계 연구

  • Received : 2022.12.09
  • Accepted : 2023.01.09
  • Published : 2023.02.28

Abstract

In order for a latecomer in deep-space exploration such as Korea to quickly keep pace with advanced deep-space exploration countries in the mutually-beneficial space exploration market, it is essential to derive a deep-space probe reference model that can reduce development period and cost. In this paper, concept and configuration for the deep-space probe reference model consisting of basic, lightweight, and expansion types are newly presented, which are based on commonly required designs for various deep-space probes. The proposed configuration adopts modular design so that the expandability and design/implementation efficiency are improved. In addition, the electrical system design pursuing lightweight and expandability is also described, which is applicable to the proposed three-types of deep-space probe reference model.

상호 호혜적으로 진행되는 심우주 탐사 시장에서 우리나라와 같은 심우주 탐사의 후발주자가 심우주 탐사선진국과 빠르게 보조를 맞추기 위해서는 개발기간과 비용을 줄일 수 있는 표준 심우주 탐사선 모델 도출이 필수적이다. 본 논문에서는 다양한 심우주 탐사선에 요구되는 공통설계를 기반으로 하는 표준 심우주탐사선 기본형, 경량형, 및 확장형에 대한 개념 및 형상을 새롭게 제시하였다. 제시된 형상은 모듈화 설계를 바탕으로 하여 확장성 및 설계/구현 효율성을 높였다. 그리고, 표준 심우주 탐사선의 3가지 형태에 적용 가능한 경량화/확장성을 기반으로 하는 전기시스템 설계에 대해서도 기술하였다.

Keywords

Acknowledgement

본 연구는 한국항공우주연구원의 자체과제인 '표준 우주 탐사선 기초연구'의 일환으로 이루어졌습니다.

References

  1. An HJ, Park HJ, Lee H, Oh SJ, et al., A study on the status of domestic space industry and policy challenges responding the new space era, STEPI (Science and Technology Policy Institute) Policy Report (2019).
  2. NASA, Artemis (n.d.) [Internet], viewed 2022 Feb 20, available from: https://www.nasa.gov/specials/artemis/
  3. NASA, Moon-to-mars overview (2021) [Internet], viewed 2022 Feb 20, available from: https://www.nasa.gov/topics/moon-to-mars/overview
  4. Sun Z, Technologies for Deep Space Exploration (Springer, Singapore, 2021).
  5. Jeon H, A study on the reference platform for deep space probe, in 2022 KSAS Fall Conference, Jeju, Korea, 16-18 Nov 2022.
  6. Jeon H, A study on solar array's mounting position for lightweight deep-space probe, in KSAS 2022 Fall Conference, Jeju, Korea, 2022.
  7. Dettleff G, Grabe M, Basics of Plume Impingement Analysis for Small Chemical and Cold Gas Thrusters (NATO Science & Technology Organization, Brussels, Belgium, 2011).
  8. He B, Zhang J, Cai G, Research on vacuum plume and its effects, Chi. J. Aeronaut. 26, 27-36 (2013). https://doi.org/10.1016/j.cja.2012.12.016
  9. Brown CD, Elements of Spacecraft Design (AIAA, Reston, VA, 2002).
  10. Yim J, Kim YB, Yong KL, Analysis of external disturbance torque on a LEO satellite, Aerosp. Eng. Technol. 10, 193-200 (2011).
  11. Chen X, Steyn WH, Hodgart S, Hashida Y, Optimal combined reaction-wheel momentum management for earth-pointing satellites, J. Guid. Control Dyn. 22, 543-550 (1999). https://doi.org/10.2514/2.4431
  12. Oberg J, Why the Mars probe went off course [accident investigation], IEEE Spectr. 36, 34-39 (1999). https://doi.org/10.1109/6.809121
  13. McCoy TJ, Robinson MS, Nittler LR, Burbine TH, The near Earth asteroid rendezvous mission to asteroid 433 Eros: a milestone in the study of asteroids and their relationship to meteorites, Geochemistry. 62, 89-121 (2002). https://doi.org/10.1078/0009-2819-00004
  14. Sawai S, Fukuda S, Sakai S, Kushiki K, Arakawa T, et al, Preliminary system design of small lunar landing demonstrator SLIM, Aerosp. Technol. Jpn. 17, 35-43 (2018). https://doi.org/10.2322/astj.JSASS-D-16-00050
  15. Jeon H, A comparison study on the solar power regulator for compact space probe, in SASE Spring Conference, Amsterdam, Netherlands, 27-29 May 2022.
  16. Fatemi N, Lyons J, Eskenazi M, Qualification and production of Emcore ZTJ solar panels for space missions, in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa Bay, FL, 23 Jan 2013.