• Title/Summary/Keyword: Space search optimization

Search Result 235, Processing Time 0.027 seconds

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Optimization Study of a Helicopter Rotor Blade Section Using EDISON Ksec2D and Grid Search Method (EDISON Ksec2D와 Grid Search 법을 이용한 헬리콥터 블레이드 단면의 형상 최적화)

  • Na, Deok-Hwan;Hahm, Jae-Joon;Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.183-189
    • /
    • 2016
  • In this paper, an optimization study on a helicopter rotor blade cross-section was made. Generalization was made to the baseline cross-section to simplify the analysis. To have better performance in aeroelastic response, with the aerodynamic center being the origin of the baseline, the distance between aerodynamic center and shear center, and the distance between mass center and shear center of the blade were minimized. For efficient searching of optimum solutions over the design space, grid search method, which is a method of graphical search was used. Two design variables, radius of balancing weight at leading edge, and offset of the spar from leading edge were selected for the study. Cubic spline interpolation method was used to accommodate searching of the optimum solution. 2-Leveled searching system was devised in accordance with the interpolation method. Optimum solution was found to show 6% decrease in both distance between aerodynamic center and shear center, and mass center and shear center to the baseline.

  • PDF

A Study on the Supporting Location Optimization a Structure Under Non-Uniform Load Using Genetic Algorithm (유전알고리듬을 이용한 비균일 하중을 받는 구조물의 지지위치 최적화 연구)

  • Lee Young-Shin;Bak Joo-Shik;Kim Geun-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1558-1565
    • /
    • 2004
  • It is important to determine supporting locations for structural stability when a structure is loaded with non-uniform load or supporting locations as well as the number of the supporting structures are restricted by the problem of space. Moreover, the supporting location optimization of complex structure in real world is frequently faced with discontinuous design space. Therefore, the traditional optimization methods based on derivative are not suitable Whereas, Genetic Algorithm (CA) based on stochastic search technique is a very robust and general method. The KSTAR in-vessel control coil installed in vacuum vessel is loaded with non- uniform electro-magnetic load and supporting locations are restricted by the problem of space. This paper shows the supporting location optimization for structural stability of the in-vessel control coil. Optimization has been performed by means of a developed program. It consists of a Finite Element Analysis interfaced with a Genetic Algorithm. In addition, this paper presents an algorithm to find an optimum solution in discontinuous space using continuous design variables.

Optimization of Unit Commitment Schedule using Parallel Tabu Search (병렬 타부 탐색을 이용한 발전기 기동정지계획의 최적화)

  • Lee, yong-Hwan;Hwang, Jun-ha;Ryu, Kwang-Ryel;Park, Jun-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.645-653
    • /
    • 2002
  • The unit commitment problem in a power system involves determining the start-up and shut-down schedules of many dynamos for a day or a week while satisfying the power demands and diverse constraints of the individual units in the system. It is very difficult to derive an economically optimal schedule due to its huge search space when the number of dynamos involved is large. Tabu search is a popular solution method used for various optimization problems because it is equipped with effective means of searching beyond local optima and also it can naturally incorporate and exploit domain knowledge specific to the target problem. When given a large-scaled problem with a number of complicated constraints, however, tabu search cannot easily find a good solution within a reasonable time. This paper shows that a large- scaled optimization problem such as the unit commitment problem can be solved efficiently by using a parallel tabu search. The parallel tabu search not only reduces the search time significantly but also finds a solution of better quality.

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

A Study on Adaptive Partitioning-based Genetic Algorithms and Its Applications (적응 분할법에 기반한 유전 알고리즘 및 그 응용에 관한 연구)

  • Han, Chang-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • Genetic algorithms(GA) are well known and very popular stochastic optimization algorithm. Although, GA is very powerful method to find the global optimum, it has some drawbacks, for example, premature convergence to local optima, slow convergence speed to global optimum. To enhance the performance of GA, this paper proposes an adaptive partitioning-based genetic algorithm. The partitioning method, which enables GA to find a solution very effectively, adaptively divides the search space into promising sub-spaces to reduce the complexity of optimization. This partitioning method is more effective as the complexity of the search space is increasing. The validity of the proposed method is confirmed by applying it to several bench mark test function examples and the optimization of fuzzy controller for the control of an inverted pendulum.

Search space pruning technique for optimization of decision diagrams (결정 다이어그램의 최적화를 위한 탐색공간 축소 기법)

  • Song, Moon-Bae;Dong, Gyun-Tak;Chang, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2113-2119
    • /
    • 1998
  • The optimization problem of BDDs plays an improtant role in the area of logic synthesis and formal verification. Since the variable ordering has great impacts on the size and form of BDD, finding a good variable order is very important problem. In this paper, a new variable ordering scheme called incremental optimization algorithm is presented. The proposed algorithm reduces search space more than a half of that of the conventional sifting algorithm, and computing time has been greatly reduced withoug depreciating the performance. Moreover, the incremental optimization algorithm is very simple than other variable reordering algorithms including the sifting algorithm. The proposed algorithm has been implemented and the efficiency has been show using may benchmark circuits.

  • PDF

Optimum Design of Trusses Using Genetic Algorithms (유전자 알고리즘을 이용한 트러스의 최적설계)

  • 김봉익;권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.53-57
    • /
    • 2003
  • Optimum design of most structural system requires that design variables are regarded as discrete quantities. This paper presents the use of Genetic Algorithm for determining the optimum design for truss with discrete variables. Genetic Algorithm are know as heuristic search algorithms, and are effective global search methods for discrete optimization. In this paper, Elitism and the method of conferring penalty parameters in the design variables, in order to achieve improved fitness in the reproduction process, is used in the Genetic Algorithm. A 10-Bar plane truss and a 25-Bar space truss are used for discrete optimization. These structures are designed for stress and displacement constraints, but buckling is not considered. In particular, we obtain continuous solution using Genetic Algorithms for a 10-bar truss, compared with other results. The effectiveness of Genetic Algorithms for global optimization is demonstrated through two truss examples.

A Study on Determining Optimal Gate Positions for Cavity Fill-Uniformity in Injection Molding Design (사출성형 설계에서 캐비티 충전 균형을 위한 수지 주입구의 최적 위치 결정에 관한 연구)

  • Park, Jong-Cheon;Seong, Yeong-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.21-28
    • /
    • 2010
  • This study shows an optimization procedure for an automatic determination on the gate position to ensure the fill-uniformity within a part cavity by using the injection molding simulation. For an optimization, the maximum pressure-difference within a part cavity induced at the stage of filling is used to evaluate degree of fill-uniformity. In addition, a direct search scheme based on the reduction of design space is developed and applied in the optimization problem. This corresponding proposed methodology was applied in the optimization on the gate location for a CD-tray molding, as a result, showed the improvement of the fill-uniformity within the cavity.

Optimization of Multimodal Function Using An Enhanced Genetic Algorithm and Simplex Method (향상된 유전알고리듬과 Simplex method을 이용한 다봉성 함수의 최적화)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.587-592
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by simplex method in reconstructive search space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF